
AD-A255 945 TaSk/Subtask IS 5.02
rlnt I! ill mmi, ll 11n lll~ll lCDRL Sequence 03705-00I 11111 111 h~l 1111 111 1111 1111 iiiIII30 September 1991/2

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Software Process Tools and Techniques Evaluation Report

Version 1.0

Contract No. F19628-88-D-0032

Task IS1 5-Software Process Management

S LP 2 91992

Preparer for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

~ v-----Prepared by:

IBM Federal Sector Division
800 North Frederick Avenue

Gaithersburg, MD 20879 92"260 78

173e'

This document has been approved for public release.

I orm Approved

REPORT DOCUMENTATION PAGE oA,8 No. 0704-0180

t\.cohe -043t1-4 Cuj.2
n

tO, th6 %oIIe(tIOfl 09 iIltOtfltOl n it fls| tO tO * C'.e to I .Ow, pe t -OOC C. 1 .4 lC00 d.ludmq the I. t t,,-h--q vt . .- jt, c..n q ~ e t o ("l1 a{i.

9jh4 '" d m9tn~~ln the d.ttA ,Irnded. 1%nd coefleItine A" "d -M the 4ntetClon of ontEtAttofl '.nd Contntte-.on th OE e .mIC dy(ter.,ctatf

m~'tlec t ,EttAt ..3fl. InctuumneqC4E-ft% for 1Eejucitq 1"O.% owar. t13'.VI%E.nqton edul re %CIf-JI~f SEE cc-.,etOdt 1Ao r m4, .,5pavson% ar4 itepfts. t i effelo
OJ. It.qhwAv. $u.te l4 AlEhqton. VA 11201-J 0. And to 1 Ott.tt '1 MAh 4 d Wuqet. PAO@EWOEW d(tlOfl P0 lect (01i4-J 0 :Et, en. OC JOSOI.

I. AGENCY USE ONLY (Leave bla) 1 2. HEPORT DATE 3. REPORT TYPE AND DA ES COVERED
iSeptember 30, 1991 Initial

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Software Process Tools and Techniques Evaluation Report
F19628-88-D-0032/0005

6. AUTOC(S)

William H. Ett, IBM

7. PERFO.IMING ORGANIZATION NAME(S) AND ADDRESS(ES) 0. PERFORMING ORGANIZATION

REPORT NUMBER

IBM Federal Sector Division

800 North Frederick Avenue 03705-001
Gaithersburg, MD 20879

9. S8*UtOING/. ONITORING AGENCY NAME(S) AND ACDRESS(ES) 10. SPONSOR1NGiMONJT0iIPjG

AGENCY REPORT NUMBER

Electronic Systems Division/AVK

Air Force Systems Command, USAF

Hanscom Air Force Base, MA 01731-5000

11. 5UPPLEMENrAIiY HOTES

N/A

12a.)ISTRIBUTIONI AVAILA3ILITY STATEMENT 12b. DISTRIBUTION CODE

Cleared for public release

13. ASPT.I1AC t'.faxirmum 200 woras)

This document describes the tools and technology examined on STARS Task IS15. This re-
port summarizes the IBM team's examination of software process representation tools and
techniques. It also summarizes the examination of software process enactment tools,
and techniques for implementing a process system from a well-defined system of processe
such as the "Cleanroom Engineering Software Development Process".

The software process definition tools and techniques sections of the document: 1) ex-

amines the feasibility of porting the Software Process Management System (SPMS) from th(
Apple Macintosh to the IBM STARS SEE, 2) provides a SPMS Port plan and 3) discusses the

use of box structures as a notation for recording aspects of software processes. The
software process enactment tools and techniques sections of the document: 1) describes

the KI Shell tool selected for supporting the IBM STARS "Cleanroom Software Process Cas(
Study", 2) describes the specification, design and implementation of the "Cleanroom
Engineering Process Assistant" prototype, and 3) provides lessons learned from perform-
ing the "Cleanroom Software Process Case Study". Finally the document makes recommenda.
tions for the selection of software process definition and enactment support capabili.
ties for the IBM STARS SEE.
N. .a'C-;;, KI Shell, Case Study, Software Process Enactment, 15. UUMIEO O VAJGis

Cleanroom Engineering, Software Development Process, Software I

Process Management System, Process Definition Tools, Process Rep- 16 PRICECCoE

resentation Techniques, Software Process Enactment Tools N/A
"'J'I .L,4S54ICA11UtJ IS. SC(UI'l I e LAStiriLA iO.N 19. 5ECURI1Y (LAt'I5C,W; J *j. LIAMIIAIION OF ABSTRACI

C
F . EPO'4T OF T!!S PAGE OF ALSTRACT

Unclassified Unclassified Unclassified SAR

-. n 2-o ._j_ i f .0 *. 2 39)."l',, • :.-U -'J "'- .0 -';) aJ C A . s , ' .

This document was developed by the IBM Federal Sector Division, located at 800 North Frederick
Avenue, Gaithersburg, MD 20879. Questions or comments should be directed to the document
owner and author, William II. E-tt, IBM, (Internet: ETTB @WMAVM7.iinisl.ibm.coma).

This document is approved for release under Distribution "C" of the Scientific and Technical In-
formation Program Classification Scheme (l)oD l)irective 5230.24). Permission to use, modify,
copy or comment on this document for purposes stated under Distribution "C" without fee is is
hereby granted. The Government (IBM and its subcontractors) disclaims all responsibility against
liability, including expenses for violation of proprietary rights, or copyrights arising out use of this
document. In addition, the Government (IBM and its subcontractors) disclaims all warranties with
regard to this document. In no event shall the Government (IBM nor its subcontractors) be liable
for any damages in connection with the use of this document.

K.j

)y i

I. ,, .- ,

...........-.......

I', (u i C. m3

STARS Task IS-15
Software Process Tools and Techniques Evaluation Report

Version 1.0

23 September 1991

W. H. Ett, IBM
R. H. Cobb, SET

Herb Krasner, SAIC
Ara Kouchakdjian, SET

Susan Phillips, SAIC
Jay Ramanathan, UES

Rajiv Ramnath, UES
Bruce Reed, UES
Jim Terrel, SAIC

International Business Machines Corporation
Federal Sector Division

System Environments
800 North Frederick Avenue

Gaithersburg, Maryland 20879

Intentionally left blank.

ii S I ARS Iask IS-1 5 Softwarc Prokcs I ools and cliniques I valuation Report Version 1.0

Preface

Preface

This report describes the activities and lessons learned during the performance of IBM's "S" increment
process tasks. The IBM STARS "S" Increment Process Task Team was composed of personnel from:

" IBM Federal Sector Division, Software Technology and Products, Gaithersburg, Maryland

- William II. Ett, IBM

" Science Applications International Corporation (SAIC), Software Technology Center, Austin, Texas

- Herb Krasner, SAIC

- Susan Phillips, SAIC

- Jim Terrel, SAIC

- Adam Linehan, SAIC

" Software Engineering Technology, Incorporated (SET), Annapolis, Maryland

- Richard H. Cobb, SET

- Ara Kouchakdjian, SET

- Roger Sisson, SET

" UES, Incorporated, Columbus, Ohio

- Jay Ramanathan, UES

- Rajiv Ramnath, UES

- Bruce Reed, UES

- Venhat Ashok, UES.

l~rct;htc Ill..

Author Sign-Off

I. W. H. Ett, IBM

2. R. H. C bb, SET

3. Herb Krasner, SAIC

4. Ara Kouchakdjian, SET

5. Susan Phillips, SAIC

---

6. Jay Ramanathan, UES

7. Rajiv Ramnath, UES

8. Bruce Reed, UES 7 /

9. Jim T el, SAIC

iV STA RS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

Contents

1.0 Document Introduction 3
1.1 Audience of Document 3
1.2 How this Document Can Be Used 3

1.2.1 Background 3
1.2,2 Provide Reader with Basic Concepts of SPMS 4
1.2.3 Provide Reader with a Case Study of Implementing a Defined Process 4

2.0 IBM STARS Task IS-15 5
2.1 Software Process Tools and Techniques Evaluation Report 5
2.2 Software Process Management 6

2.2.1 Software Process Management: A Behavioral View 6
2.2.2 Software Process Modeling 8
2.2.3 Software Process Enactment 14
2.2.4 Process Improvement 19
2.2.5 Metrics 19

3.0 STARS IS-15 Task Organization 25

4.0 STARS IS-15 Candidate Tool Acquisition 27
4.1 Constraints on Tool Selection 27
4.2 Tool Selection for Providing a Software Process Modeling Capability 27
4.3 Tool Selection for Providing a Software Process Enactment Capability 28

5.0 The Knowledge-Based Integration Shell 31
5.1 KI Shell View of Process Technology 31
5.2 Summary of KI Shell Features 37
5.3 KI Shell Concepts 37

5.3.1 Method Meta Language 37
5.3.2 KI Shell Process Modeling and Enactment Features 39

5.4 Installation of a KI Shell Application 41

6.0 STARS IS-15 Software Process Case Study Preparation 45
6.1 Preparation and Scoping of "Cleanroom Software Process Case Study" 45

6.1.1 Brief Description 45
6.1.2 Lessons Learned 45

6.2 Preparation of Specification for the CEPA Demonstration 46
6.2.1 Brief Description 46
6.2.2 Lessons Learned 47

6.3 Validation of the "Cleanroom En~necring Process Assistant" Implementation 48
6.3.1 Brief Description 48
6.3,2 Lessons learned 49

6.4 Major Lessons Learned from Case Study Preparation 49
6.5 Use of Cleanroom Specification Tcchniqucs to Model Proccsses 50

7.0 Software Process Enactment Experiment and Demonstration P.rcparation 59
7.1 CIIPA I)emonstration System Dcscription 59

7.1. I Software l-npneering lEnvironments 59
7.1.2 CFPA and Software [-rineering lnvironments 60
7.1.3 C-'IPA: An Overview 61
7.1.4 1sing lhe CEPA System 62
7.1.5 CF PA Fcaturcs 65

(onhtenit" V

7.1.6 CEPA Tools 75
7.1.7 Using CEPA (continued) 75
7.1.8 Conclusions and Lessons Learned 86

7.2 Overview of the Process for Developing Process Applications in KI Shell 87
7.2.1 Process for Developing KI Shell Process System Applications 88

7.3 CEPA Prototype System Development Implementation Log Overview 90
7.3.1 March 23 through April 19 90
7.3.2 April 22 through May 3 90
7.3.3 May 6 through May 24 93
7.3.4 May 27 through June 12 93
7.3.5 June 12 through June 21 93
7.3.6 June 24 through June 28 94
7.3.7 July 1 through July 30 94
7.3.8 CEPA Prototype Development Summary 95

7.4 Cleanroom Engineering Process Assistant Instdllation Instructions 95
7.4.1 Pre-installation Activities 95
7.4.2 Install the Oracle RDBMS 96
7.4.3 Install the KI Shell / CEPA Files 97
7.4.4 Create and Setup the CEPA Account 98
7.4.5 Setup the CEPA FileStore Version 99
7.4.6 Setup the CEPA ORACLE Version 100
7.4.7 Archiving the CEPA Database I01
7.4.8 Restoring an Archived CEPA Database 101

7.5 CEPA Demonstration Operation Instructions and Script 102
7.5.1 CEPA Operation Instructions 102
7.5.2 CEPA Demonstration Script 102
7.5.3 CEPA Demonstration Script 103

7.6 Description of all CEPA Software Source Deliverables 105
7.7 Major Lessons Learned from CEPA Implementation 108

7.7.1 Process Implementation Roles 108
7.7.2 Key Problem and Solution 108
7.7.3 KI Shell's Suitability for Cleanroom 109

8.0 STARS IS-15 Software Representation Work Ill
8. 1 Software Process Modeling Support III

8.1.1 Software Process Management System: Overview Ill
8.1.2 Software Process Management: Concept of Operation 115

8.2 SP'MS: Port Assessment to the IBM RISC System/6000 127
8.2.1 Process Model Database 129
8.2.2 Process Reasoning System 129
8.2.3 User Interface 130
8.2.4 COTS Projcct Management System 131
8.2.5 Concluions 132
8.2.6 SPNIS: Port Plan for Porting SPNIS to the IBM RISC Sytem:6000 133
8.2.7 Schedule 135

8.3 SPMS lrotot\pc System I'sc Training 135
8.3.1 SPMS Trainine Materials and Discussion 139
8.3.2 SP\IS lvaluation Prototypc: I lardware Software Requirements 1.31

8.4 Major I csons l earned from SPNIS Mieration Analys'. and SPNIS 1 raiing 142
8.4.1 I essons I earned from S!PNIS Miration Analysis 142

9.0 IBM STARS SUE Process Management Archifecture I)iscusion 143
9.1 SPMS Coexistance Strategy with (Other Process Management Capabilities 143

9. 1. I lIP Soft Bcnch 143
Q.1.2_ KI Shell 144

VI S I A RS I aAk IS I 5 Sofiwkare Process I ools and I echniqucs I \,luafiri Report Version I.i

9.1.3 SPMS, KI Shell, and IP Softbench Coexistence Strategy 144
9.2 IBM STARS Process Management Architecture Options 145
9.3 Product Integration Strategy 146

9.3.1 The Components for a Process Support Environment 146
9.3.2 Process Support Environment Integration 149
9.3.3 Benefits of a Process Support Fnvironment 151

10.0 IS-15 Task Conclusions 153

11.0 References 155

Appendix A. SP*IS Training Class Materials 157

Intentionally left blank.

Viii S I ARS I aAs IS- IS Sofma~rc IProcess I <' md I cidinliques' I %;tIlatiolI R(port VcrNiol [.0

Figures

1 . The L ayered Behavioral Model of Software Development 7
2. Software P~rocess Management 8
3. Example of an Approach to Software Developmey.t 12
4. Portion of the RADC Quality F'ramework 21
5. Software Quality framnework F-actors and Associated Criteria 22
6. IBM ST[ARS "S" Increment Process '1ask 'learn 2 6
7. E~xaiipk.- of a Concurrent Enginering P~rocess Performed by a Die IDesigner Role 32
8. Lnterprise Activity Must Bie Performed By Using Intormatioti / Mechanisms under Appiopriate

Control 33
9. '[he Development and Use of KI Shell Method 34

10. AMi IVI'IY & ROLES: To Surn ort a Generic Eniterprise Sub-Process 36
I '. PERFORM EVENT CAUSED BY A MOUSE, CLICK A'l ''IE USE:R INTIERFACE: Causes

Execution of a C Procedure 36
12. Method Layout for UES's CASE Manager 40
13. KI Shell's Runtime Architecture 42
14. Knowledge-B ised Shell \Vili Be Used to Implement a Specific '-'I Shi'J Application 43
15. A Black Box Subfunction from the CEPA Specification 51
16. D~eveloper Screen Format 53
17. Using CEPA Facilities to Perform a Black-Box Task 54
I S. Sample Process from Cleanroom En.ineering Software lDevelopment Process (I of 2) 55
19. Sample Proces;s from Cleanroom Engineering Software D)evelopment Process (2 of 2) 56
20. D~evelopment '[earn Leader Screen Format 63
21. CEP1A Administrator Screen Format 68
2 z . Software Engineering Manager Screen Format 69
23. Specification Team Leader Screen Format 70
24. Certification 'earn Le'idcr Screen Format 71
25. Specifier Screen Fo. .nat 72
26. D~eveloper Screen Format 73
27. Certifier So'--en Formnat 74
2S. Using CEPA F, lities to Performn a "Bilack Box '[ask" 77
29. U sing CEPA Facilities to Perform a "State Box" '[ask 78
30. U.sing C111A Facilities to Perform a "Clear Bo." '[ask 79
31. U sing CHIPA Facilities to Perform a "Refinement" Task 80)
32. V'sing CEPA Facilities to Perform a "CorreclTi ' Code" Task 81
33. (1 sing CIE PA F .cilitics to Pcrfonn ai "D~esign (~ :tification"TIask 82
34. I'sintz CEP1A Facilities to Perform a 'Conduct Ceritication" '[ask 83
3';. U sing CVPA Facilities to Perform a "Submit,'Resolve a Question" T'ask 84
36. 1 *iltw CF'PA Facilities to Performn "Filur Report Cot rection- '[ask 85
37. Formn for an I)ITO Process S7
3S. ('laniroom Process Method I 4lVout (Part I of 2) 91
39). (1eaniroorn Process Method I avout (Part 2 of 2) 92

4H W'hat Is Software Procss Mlanagemnent? 112
41. 1 im\l- el Architcture of SPN~IS. 113
42. [hei S At~i.rcliccture to- SlIN1S. 114
431 Project oc Plan 'omc'pt 116
4-4. P:Iroc ess NI. dcl ('onpoticntt 117
45 . A *l0Ii' evcl View of O pcratiln of SPI~S 119
46. IProcce's Acti' it\ ~d'j1 S\ Imbok 122
4-. Process .\ctiNvIt\ IInks 124
4'-. Proces", (Iranularity 1 paulilon (ommeept 12 S
.49 i Arc1hitecture 1 2X

1 iinur", N

50. Candidate Trade Options for SPMS Port 134
51. SPMS Port Plan (1 of 3) 136
52. SPMS Port Plan (2 of 3) 137
53. SPMS Port Plan (3 of 3) 138
54. Hierarchical Structure of SPMS Folder 140
55. Candidate IBM Process Support Environment Architecture Concept 150
56. Levels of Integration 152

X SI .\RS'I ik IS I S, I re I'rccss I ook, atnd I tiriltim. I %,alt;itiont Report Version 1.()

Tables

1. Primary Alternative Software Process Model Types. 11
2. CEPA Prototype System Development Summary 95
3. Components of a Process Support Environment 148

I ablcs xi

Products Referred to in This Report

1. AIX is a product of the IBM Corporation.

2. CASE Manager is a product of UES, Incorporated.

3. liP Encapsulator is a product of the Hewlett-Packard Company.

4. LIP Remote File Access is a product of the Ilewlett-Packard Company.

5. HP SoftBench is a product of the Hewlett-Packard Company.

6. IIP/UX is a product of the Ilewlett-Packard Company.

7. HP 9000 is a product of the Hewlett-Packard Company.

8. lyperCard is a product of Apple Computer, Incorporated.

9. IBM RISC System/6000 is a product of the IBM Corporation.

10. Informix is a product of Informix Software.

11. Ingres is a product of Ingres Corporation.

12. KI Shell is a product of UES, Incorporated.

13. Macintosh is a product of the Apple Computer, Incorporated.

14. MicroPlanner Xpert is a product of Micro Planning International, UK.

15. NEXPERT Object is a product of Neuron Data Corporation.

16. NEXTRA is a product of Neuron Data Corporation.

17. Oracle is a product of Oracle Corporation.

18. Presentation Manager is a product of the IBM Corporation.

19. PRO*C is a product of ORACLE Corporation.

20. SUNOS is a product of Sun Microsystems.

21. SUN 3 is a product of Sun Microsystems.

22. ST, TF.MATF, is a product of i-Logix, Incorporated.

23. Sybase is a product of Sybase, Incorporated.

24. TEUAM WORK is a product of trademark of Cadre Technologies.

25. TFEAMJVORKSIM is a product of trademark of Cadre Technologies.

26. UIlMiX is a product of Visual Edge Software, Limited, Canada.

27. VAXiVMS is a product of the Digital Equipment Corporation.

28. WordPerfcct is a product of WordPcrfect Corporation.

29. XVT (E~xtcnsiblc Virtual "lToolkit) is a product of XVT Software.

30. XI'M is a product of XPM, Incorporated.

Network File System (NFS) is an open industir standard for remote file systems, developed and offered by
Sun N1icrowvstens.

XII SI..\RS lask IS-15 Soitwarc Process lools and Iechniqucs IIvaluation Report Version 1.0

Registered Trademarks of Products Referred to in This Report

1. AIX is a registered trademark of the IBM Corporation.

2. CASE Manager is a registered trademark of UES, Incorporated.

3. KI Shell is a registered trademark of UES, Incorporated.

4. HyperCard is a registered trademark of Apple Computer, Incorporated.

5. IBM RISC System/6000 is a registered trademark of the IBM Corporation.

6. Macintosh is a registered trademark of Apple Computer, Incorporated.

7. MicroPlanner Xpert is a registered trademark of Micro Planning International.

8. Microsoft Windows is a registered trademark of the Microsoft Corporation.

9. NEXPERT Object is a registered trademark of Neuron Data Corporation.

10. NEXTRA is a registered trademark of Neuron Data Corporation.

11. OSF/Motif is a trademark of the Open Systems Foundation.

12. Oracle is a registered trademark of Oracle Corporation.

13. Presentation Manager is a registered trademark of the IBM Corporation.

14. PRO*C is a registered trademark of ORACLE Corporation.

15. STATEMATE is a registered trademark of i-Logix, Incorporated.

16. TEAMWORK is a registered trademark of Cadre Technologies.

17. TEAM WORK is a registered trademark of Cadre Technologies.

18. UIMiX is a registered trademark of Visual Edge Software, Limited.

19. UNIX is a registered trademark of AT&T.

20. WordPerfect is a registered trademark of WordPerfect Corporation.

21. X-Window System is a trademark of the Massachusetts Institute of Technology.

22. XPM is a registered trademark of XPM, Incorporated.

23. XVT (Extensible Virtual Toolkit) is registered trademark of XVT Software.

laics b illo

Intentionally leIft blank.

XiV S V A RS [ask IS- 15 Software Vrocess Ilools and Ilechniques [valuation Report Version 1.0)

Intentionally left blank.

Intentionally left blank.

2 S IF\RS 1 ask IS-I 5 Softbarc Process I ools and I echniques IEvaluation Report Version I.0

1.0 Document Introduction

The purpose of the "Software Process Tools and Techniques Evaluation Report" is to (1) describe the key
activities of the IS-15 Process Task, (2) identify the products produced, and (3) discuss relevant task results.

1.1 Audience of Document

The intended audiences for this document are:

1. The STARS customer: To describe the activities of STARS Task IS- 15, to identify the products
produced, and describe task results;

2. The STARS Prime Contractors: To transfer technology developed by the IBM STARS team in pursuit
of our goal to evaluate, select and experiment with products and techniques to field a software process
capability for the IBM STARS SEE;

3. The DoD, Services, and Government Users: To describe software process management technology and
tools that can be applied to assist DoD software development organizations in defining, modeling, and
testing process models for software development. Further, we will describe for the DoD, Services, and
Government users, tools and techniques available today, to implement a process model to facilitate the
enactment (or execution) of a project's process for developing software.

1.2 How this Document Can Be Used

1.2.1 Background

There are three major activities towards implementing a software process for enactment in a modem software
engineering environment (SEE):

1. The modeling of a software process in a form that can be readily understood and followed; You cannot
implement a software process you have not defined and do not understand;

2. The analysis of the process model developed for process implementation and the determination of how
processes can be enacted by the SEE or manually;

3. The implementation of the process system, from the process models developed. (By process system, we
mean a system of processes that have been adapted and tailored to support a selected development or
production effort. Further, a process system is built to satisfy stated process driving requirements, such
as cost, schedule, and quality goal drivers.)

IBM planned the IS-15 Software Process Management task to provide the IBM STARS SEE, and poten-
tially all of the STARS SEEs, with the ability to support software process modeling, and to illustrate the
implementation of a defined software process for enactment. The results of the IBM IS-15 task are pre-
sented in this document. Further, this document was prepared to provide the reader with an understanding
ot:

Software process modeling and the Software Process .ilaflam lment SI'stcm (SPMS);

2. \\1~at it takes to implement a well-defined softwvarc process model using a commercidly available tool,
such as I-TS's Knowh'dge Integration Shell (KI Shell).

I)ocurneri In trod ucti on 3

1.2.2 Provide Reader with Basic Concepts of SPMS

This document describes a tool for modeling and testing software processes, called the "Software Process
Management System (SPMS)" developed under the IBM STARS IR-23/B task. It also describes how the
prototype system developed under IR-23/1 can be migrated to the IBM STARS SEE and serve as a key
component in the planning and modeling of software processes. Further, this document will describe a coex-
istence strategy of SPMS with other candidate software process management tools.

This document also includes training materials prepared for the SPMS evaluation prototype training class,
that were given to the SEI Process Definition Project group to support their software process modeling
activities.

From the discussion of SPMS, the reader will gain understanding of how SPMS could be used to support
the modeling of software processes. The discussion will also refer the reader to additional source materials
for further study.

1.2.3 Provide Reader with a Case Study of Implementing a Defined Process

This document will describe a software process implementation experiment, taking a software process model
developed under STARS Task IR-70/E, named the "Cleanroom Engineering Software Development Process,"
and scoping it to produce a "Cleanroom Software Process Case Study" problem for implementation in a
process enactment tool called KI Shell.

From the discussion of the development and implementation of the "Cleanroom Software Process Case
Study" problem, the reader will gain understanding of what is required to take a defined process model and
implement it using the KI Shell development em'ironment, to support the enactment of a selected portion of
the "Cleanroom Engineering Software Development Process."

4 S IARS task IS-1 5 Software Ilroecs I ols mnd I echtniqucs Ivaluation Report Version 1.0)

2.0 IBM STARS Task IS-15

The purpose of STARS Task IS-IS was to:

1. Evaluate and select technology to support software process definition and enactment support for the
IBM STARS software engineering environment;

2. Develop a concepts of operation for process definition and process enactment support to detcrmine effec-
tive approaches to support software process management for the IBM STARS SEF;

3. Develop a software process and implement it, to examine the software process support tools selected.

2.1 Software Process Tools and Techniques Evaluation Report

The purpose of the "Software Process Tools and Techniques Evaluation Report" is to describe the activities,
products and results of STARS Task IS-15. In particular, this report describes:

1. IS- 15 activities, products, and results

2. The tools selected to support IS-15 software process definition and enactment experiments and the
rationale for their selection

3. The development of the "Cleanroom Software Process Case Study" and the "Cleanroom Engineering
Process Assistant (CEPA)" demonstration scenario including:

a. The scoping of the "Cleanroom Engineering Software Development Process" for the "Cleanroom
Software Process Case Study"

b. The development of the "Cleanroom Engineering Process Assistant" demonstration scenario and
specification

c. The use of Box Structures and Cleanroom specification techniques for representing processes

d. The process for implementing the "Cleanroom Engineering Process Assistant"

e. The "Cleanroom Engineering Process Assistant" demonstration system that was implemented

f. Instructions for demonstration use.

4. The Software Process Management System (SPMS) and

a. llow SPMS can be migrated to the IBM RISC System/6000 and a plan for its migration

b. How SPMS can coexist with other process management capabilities, including KI Shell, the process
enactment services provided by liP SoftBench, and cooperative software process enactment support
provided by coordination technology.

c. Ilow SPNMS technology will be employed to support the SEI in reuse-based process modeling and
software process asset capture and representation.

5. The SPMS training session prepared for the SEI and the system requirements for using the SPNIS proto-
type.

IBNI S IAIRS lask IS I

2.2 Software Process Management

The purpose of this section is to introduce software process management concepts. This section provides
the reader with an overview of the state of software process management as well as to identify relevant issues
that need to be addressed in future STARS work.

We shall describe software process management from a behavioral perspective. We introduce software
process management in this way because it is important to recognize that there are many dimensions to the
management of process and to communicate to the reader that processes exist -- not only for individuals --
but for groups or teams, and the organizations to which they belong. Next, we shall provide an overview of
process enactment concepts. In the enactment discussion, we shall describe the three major views of process
that must be modeled to support process enactment, namely the "activity-based process modeling" view, the
"role-based process modeling," and the "process information modeling" view. Finally, we shall provide an
overview of process improvement and the role of metrics in its support.

2.2.1 Software Process Management: A Behavioral View

A Layered Behavioral Model of Organizational Software Processes

Studies by Walston and Felix < 34 >, Boehm < 3, 4 >, McGarry < 22 >, and Vosburgh, Curtis, Wolverton,
Albert, Malec, Hoben, and Liu < 33 > have demonstrated the substantial impact of behavioral (i.e., human
and organizational) factors on software productivity. To create software development technology that dra-
matically improves project outcomes, Weinberg < 35 >, Scacchi < 31 >, and DeMarco and Lister < 10 >
argue that we must understand how human and organizational factors affect the execution of software devel-
opment tasks. Software tools and practices conceived to aid individual activities have been disappointing in
not providing benefits that scale up on large projects to overcome the impact of team and organizational
factors that affect the design process. The IBM STARS process team has explored concepts to address these
problems to bring project and process management closer together.

An extensive study of 17 large software development projects (in 9 companies) done by the MCC in 1986-87
< 16 > attempted to describe the processes and mechanisms through which productivity and quality factors

operate. These descriptions supported our need to understand how different tools, methods, practices, and
so forth actually affect the processes controlling softwart productivity and quality. Since large software
systems are still generated by humans rather than machint s, their creation must be analyzed and modeled as
a collection of behavioral processes. In fact, software devel pment should be represented at several behav-
ioral levels < 15 >. As a result of the empirical studies of software development at MCC, the layered behav-
ioral model was created and defined as presented in Figure 1 on page 7 < 8 >. This model emphasizes
factors that affect psychological, social, and organizational processes to show how they subsequently affect
process effectiveness, productivity and quality.

"The layered behavioral model focuses on the behavior of those creating the artifact, rather than on the evolu-
tionary behavior of the artifact through its developmental stages. At the individual level, software develop-
ment is viewed as an intellectual task subject to the effects of cognitive and motivational processes. When
the development task exceeds the capacity of a single software engineer, a team is convened and social proc-
esses interact with cognitive and motivational processes in perforning teclmical work. In larger projects
several teams must interate their work on different parts of the system, and iniIeam group dynanics are
added on top of in/rateam group dynamics. Projects must be aligned with company goals and are affected
by corporate politics, culture, and procedures. Thus, a project's behavior must be interpreted in the context
of its corporate environment. Interaction with other corporations either as co-contractors or as customers
introduces external influences from the broader world of business. '[he cumulative effects on software devel-
opment can be represented in the layered behavioral model. The size and structure of the specific project
determine how much influence each layer has on the devclopment process.

6 S .\RS [ask IS-15 Sot'tware Process iools and I echnriqucs I valuation Report \'crsion 1.0)

Bins Mii

Cogniolen and G40 Organilzlonal
contet of Am l s-s-- Motivatlon Dynalivcs aievior

Figure 1. The Layered Behavioral Model of Software Development.

The layered behavioral model is an abstraction for viewing process of large software projects in the context
of other behavioral processes. It encourages thinking about a software project as a system with multiple
levels of process involved. This does not replace traditional process models of software development, but
rather organizes supplementary process views. This is orthogonal to traditional process models by presenting
a cross-section of the behavior on a project during any selected development phase. Describing how soft-
ware development problems affect processes at different behavioral levels indicates how these problems ripple
through a project < 31 >.

The layered behavioral model encourages software process engineers to extend their evaluation of software
engineering practices from individuals to teams and projects to determine whether the aggregate individual-
level impacts scale up to an impact on programming in the large and allows them to explore multi-project
and organizational impacts on projects.

At the project level, qualitative support is primarily process oriented and focuses on who is involved, how to
make those involved productive and efficient, how decisions are made, and how tasks are accomplished. This
does not undervalue the importance of the product, because the product becomes the focus around which
these essentially human design and development processes will be organized.

Therefore, improving software process quality involves understanding the human processes underlying soft-
ware development < 8, 16 >, providing methods and technologies to support these processes, and managing
them effectively. This is what we mean by software process management. (Figure 2 on page 8). Producing
a well-designed deliverable becomes the product of a well-managed set of human processes organized around
focused objectives and supported properly by process management technology. This involves support for
process modeling, simulation, enactment, and process evolution in next generation process-oriented software
engineering environments.

IBM STARS Task IS-I 5 7

BEHAVORIAL:

HUMAN PROCESSES IN APPLYING
THE SOFTWARE DEVELOPMENT
PROCESS

MANAGEMENT:

MANAGEMENT OF THE SOFTWARE DEVELOPMENT
SOFTWARE DEVELOPMENT PROCESS
PROCESS

TOOLS AND METHODS:

METHODS AND TECHNIQUES TO
SUPPORT HUMANS IN APPLYING THE
SOFTWARE DEVELOPMENT PROCESS

Figure 2. Software Process Managrneat.

2.2.2 Software Process Modeling

Software process research is an emerging area of study within the field of software engineering. To make
progress in effectively examinig the issues, one must start by establishing a coherent view of the subject
matter to provide a conceptual framework for discussion. The definitions presented and the discussion of the
interrelationships among them low the formulation of critical questions about many aspects of the software
process.

While the key definitional issues have been discussed at a series of annual workshops (e.g., the Intemational
Software Process Workshops I through 6), there is no current consensus as to the proper conceptual frame-
work. The view represented here builds on a preliminary hierarchy of concern, starting at project-oriented

8 STIRS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

processes that are concerned with establishing the real needs of end users of systems and their impact upon
software process models. The view also recognizes the hierarchy of concerns from expertise and technology
below all the way down to the structure of particular CASE tools. J[he organization :onsists of several levels
of progressively more concrete software p.'ocess issues and concerns.

The primary concern of STARS is how process managcinent will apply to government projects (either con-
tracted or in-house). Therefore, we focus our discussion at the project level (i.e., project-oriented processes),
which serves to bound the scope of considerations as seen in the layered behavioral model. The broader
process concerns of a multi-project line of business are discussed later in section 2.

2.2.2.1 Project-Oriented Software Development Process Mode!ing

The primary focus of this section is to describe the domain of software development process models. The
term software development is taken to encompass the tull range of software and system-related activities from
problem statement through post delivery maintenance, modification, and evolution' (i.e., cradle to grave, life-
time, or sometimes life cycle). There are other views of software engineering practice that do not focus on
process issues (e.g., an information-oriented model), and these must be consiJered as well. In the following
paragraphs, we define the terms of our conceptual framework and illustrate the definitions by posing relevant
issues at that Lvel of concern

Considerable confusion has arisen in past discussions of the software process because of a lack of common
definitior-. Therefor,-. we define the following terms.

Software process:
The collection of related activities, events, mechanisms, tasks, and/or procedures seen as a coherent
process involved in the production and evolution of a software system that satisfies a iven need.

Software process model:
A descriptive representation of a software process that supports explanation, reasoning, simulation, and
so forth. A software process model should represent attributes or views of a range of particular soft-
ware processes 'nd should be sufficiently specific to allow reasoning about them.

Software process models are valuable for supporting effective process management involving aspects of:
process planning, enact;, g, predicting, monitoring, adapting, and correcting. Software proccss models allow
for the:

I. FEnabli,g of effective coordination by facilitating the communication of a formalized process leading to a
consensus understanling across the organization or project.

2. Enabling of process reuse by facilitating analytic selection of a process model from a base set of alterna-
tives that include components and process abstractions. Reasoning about the alternatives is also
e.iabled.

3. Support for process evolution, adaptation, and correction occurs owing to the ability to define model-
based process measurements, experience collection, and process rationale.

Relevant Issues in process modeling at this level of concern arc:

. o what extent is a model descriptive or prescriptive; that is, how does it correspond to (correctly
dccsibe) ho\ soft\\are is rctllh built or to an ideal of how software should be built?

2. lo \\ hit cxtcnit does a model decribe the entire process as opposed to some aspect or view of a prwe.,s?

I iri[plimp e itiim x -umtwrli .,lil\ t'\,,\ (., Q\ 'r tilne.

111\1 SIARS lak I 15 9

3. To what extent is a model useful in developing managerial and technical approaches to software develop-
ment? Managing these extents (e.g. the gap between the real and the prescribed ideal process model) is
one of the duties of the new process engineer.

2.2.2.2 Types of Project Process Models

Simplistically, a large software project occurs within the context of an ongoing negotiation about what the
user wants, what the customer can afford, and what the developer can build. This occurs within a manage-
ment context that must deal with three principal factors: cost, schedule, and quality. Within that context
there exists a range of possible strategies for defining an organized software development process on a large
software project. This range is delineated by two extremes. On one end of the spectrum is the job shop
philosophy, in which each project requires a totally different process based upon specialized project criteria.
This seems to be the currently predominant strategy within DoD projects. On the other end of the spectrum
is the factory philosophy in which a standardized process is designed in advance and is reused on each
project. This has been used successfully by the Japanese software factories, and the advantages gained have
been described by Cusumano < 9 >. In the middle of the spectrum would be the semi-factory philosophy in
which pa, -; of the process are reused on each project within an adaptable framework addressing specific
project needs. We expect DoD projects to continue to be in situations where process adaptability is impor-
tant. Th-o;efore, we present the following set of high level process model types that can be reused on
projects.

The four primary alternative project-level software process model types are:

i. Waterfall,

2. COTS adaptation,

3. ligh-level specification transformation, and

4. Exploratory/incremental (includes Spiral).

(See Table I on page 11.) We classify each model according to the situations in which it is most applicable
and provide example applications for clarification. We also discuss how to determine, or select, ai, appro-
priate model in the context of a contract program. It should be noted that these models can also be used at
the subproject level as well, and it is appropriate for more than one of these types to be used on a large
project, leading to a higher level model that contains these as subprocess instances. The integration of sub-
projects using different process models is currently problematic. A fifth type is the widely used, ad hoc (i.e.,
undefined) process model -- a discussion of which is beyond the scope of this section. It is not clear, as yet,
whether these model types are instances of any kind of process metamodel from which these inherit proper-
ties (an interesting research topic).

The waterfall model has been described in many publications (e.g., Royce < 30 >); its applicability, however,
has not. We see its primary usage in those situations in which the functionality, architecture, and technology
are well understood. Examples of this might be inventory control or data reduction and reporting. The
COTS adaptation model is most applicable in situations in which the application and technology are well
understood and where there are several commercial packages available that together achieve almost all of the
functionality required. The added value becomes the adaptation and integration of those COTS systems.
I xamp)Ie applications are fin '-d management or document preparation. The high-level specification trans-
formation model is most uscii when the functionality required is not well understood but where 4GI tech-
nology is available fo, the creation of high-level "programs." lxample applications include MI IS or forms
management. The cxplorator' incrcmental model is most useful when the major application issues are not
well understood (c.g., feasibility, usage scenarios, functional features desired. etc.) and when a movement to
more stable capabilities is desired. This might include one or more early proloi\pes to clarify these issues.
Example applications include military C31, SDI), or real-time embedded systems,

10 SLARS 1;ak IS- 5 Sofimarc Protcs I ook and I vctiriiqtics I -a;lation Report Version 1.0

Process Model Name Situation Characteristics Example Applcation

Well-understood applica-

1 Waterfall tion, architecture, tech- Data reduction
nology

Same as waterfall, but
2 COTS adaptation several commercial packages Inventory control

available

3 High-level specification Ill-understood application, MIS
transformation use of 4GLs

Major application and tech-
4 Exploratory / incremental / nology issues not under- Military C31

spiral / rapid-prototyping stood; need for early subset
demonstrations

5 Ad hoc / undefined ???

Table 1. Primary Alternative Software Process Model Types.

The major issue relative to choosing one of the model types is in how to interpret the notion of "well under-
stood" - that is, by whom is it well understood? We believe that this criterion must apply to all stakeholders
in the process if the model is to be used and adapted effectively across the system's life. Major techniques to
be used in the exploratory/incremental model are prototyping and risk management. We define these tech-
niques as those that increase the probability of producing a useful, fieldable, and supportable system.

The relationship of these model types to the military acquisition, procurement, and contracting process can
be identified. During technology base, demonstration/validation (DEM/VAL), and proof of principle efforts,
for example, the exploratory/incremental model is recommended. During the transition to full scale engi-
neering development (FSDE), an evaluation must be made to see whether one of the others should be used,
with the default being the exploratory / incremental model rather than the waterfall model. During FSDE, if
the technical approach tends toward heavy use of COTS, then negotiable requirements are achieved by using
the SOW requirements as COTS evaluation criteria, with selected COTS redefining the requirements. If a
point is reached in which all requirements, technology, and architectural issues are well understood, then a
waterfall approach is justified. The choice of HI!L specification transformation depends on the availability of
4GL (or automatic programming) technology within well-defined application domains. This approach is only
recommended for traditional business-type applications or until domain modeling techniques and automatic
programming techniques come together for very specific application areas in the future. Strategies for
exploratory/incremental model contracts include the use of evolutionary software development processes
(SDPs) SDPs and issue/risk management plans. During the transition from FSDE into installation/fielding/
operation/support, we recommend that the process model be transferred as the maintenance process starting
point. This needs to include process history and rationale to be effective on a continued system evolution
basis.

There are a number of applicability questions to consider.

1. Are there empirical reasons for preferring one model to another; that is, do they lead to more cost-
effective software development and,'or a hi~icr quality product?

2. Can there be any a priori reason for preferring one model to another? If so, what criteria are relevant'?

3. (Can a given technical approach conform to more than one model?

Current wisdom asserts that a given technical approach (and the proccs-. model it conforms to) might be
more appropriate for: a particular class of applications (application domain specificity), a parlicular class of
systCml architectures (structural specificity), or a class of organizational structures (organization specificit1\.

IBM SIARS la~k IS-15 II

The relationship of project process models to design approaches, methods, techniques, technology, and tools

is such that the process models are supported by these more specific items in specific situations.

2.2.2.3 Approaches, Methods, Techniques, and Tools

In support of project-oriented process modeling, chosen approaches (and subsequently methods, techniques,
and tools) carry out the objectives of that process model and are mapped onto one another. For example,
the developmental project approach in Cleanroom describes the separation of requirements, development,
and certification concerns inherited from the goals and objectives of the Cleanroom Engineering Life Cycle
Process Model.

Approach to software development:
A strategy for achieving the development of a software system in a way that conforms to some soft-
ware process model. An approach can be expanded into a more detailed approach.

A simple (highly abstract) example of an approach to software development is shown in Figure 3.

. TRANSFORMATION

ND 0 application operational USE
NEED concept system

(AC) (OS)

[VERIFICATIO

Figure 3. Example of an Approach to Software Development.

The example in Figure 3 immediately raises a number of questions about the representation of the model
(both syntax and semantics). For the graphical syntax questions arise about the meaning of a box, a line,
and an arrow. What are the rules for legally combining these symbols? What are the meanings of the terms
application concept (A C), operational system (OS), transformation, and verification used in the approach?
For example, AC might be a set of user scenarios or a requirements document; OS might be a functional
prototype. The term transformation might mean development and verification might mean testing the OS
against the requirements. The terms of the approach (which is also a model in the general sense) can only
be defined in the context of the broader process model goals and objectives.

Software development methods and tools support the application of approaches to software development.

Method:
An explicit prescription for achieving an activity or set of activities required by an approach to software
development.

Methodology:
A study of methods. The term is often used incorrectly as a synonym for method.

Technique:

12 STARS Task IS-15 Software Process Tools and Techniques |-valuation Report Version 1.0

A systematic procedure by which a software engineering task is accomplished. Typically, a technique is
considered to be supportive of and subordinate to a method.

When looking at a specific method, further questions are in order: With what approaches is the method
consistent? How good is the method when it is compared with other methods consistent with the approach?
How much of the process does the method prescribe? How can the method be automated - that is, sup-
ported by a software tool?

Software tool:
A program or collection of programs that can support the application of a method or technique.

Although this definition does not exclude general-purpose tools, it does insist that tools can only be judged
by the extent to which they support methods, for example, CADRE Teamwork's support for the DFD
(dataflow design) method. In addition, we are concerned with usability and efficiency. Is a given tool easy
for the intended user to use? Is it efficient compared with some other support for the same method? While
individual software tools are of undoubted value, coordinated collections of tools are attracting increasing
attention. These are termed software development environments, a term taken to be synonymous with the
terms programming support environments, project support environments, software engineering environments,
and integrated programming/project support environments.

We take the position that an unstructured bag of tools does not qualify as a software development environ-
ment. Thus, we define the term software development environment in the following way.

Software development environment:
A coordinated collection of software tools organized and adapted to support some approach to soft-
ware development or conform to some software process model (sometimes called a software engi-
neering environment or SEE).

A software development environment (SDE) is useful to the extent that it is an improvement on an uncoor-
dinated collection of tools. It is possible for an SDE to support more than one approach or conform to
more than one process model.

Multi-Project Process Management: Further project-specific characteristics of interest are: visibility of key
subprocesses (observable), a basis in frequent and evolving demonstrations of emerging functionality, contin-
uous customer/user involvement, iterative/incremental development, early participation of key life-cycle
stakeholders at all times, tailored appropriateness to specific development situations, specification following
implementation, and flexibility over the life cycle. Several related technologies are emerging to support a
quality-driven process (e.g., concurrent engineering, process management, intelligent groupware, Al-based
design, prototyping, and incremental development). When brought together with the goals of a quality-
driven process, these technologies can lead us to define a class of new software life cycle process models used
in the projects.

When a project process is viewed in the context of a total business process, a software development project
becomes an instance in the growth of a base of software assets. The basic principles of such a multi-project,
process-driven, software business philosophy are continuous software process improvement, process knowledge
definition, uscrcustomer focus, commitment to software quality at all levels of an organization, teamwork,
investment in people, reuse, and, most important, customer/user satisfaction.

I1\1 SIARS lask IS-15 13

2.2.3 Software Process Enactment

The purpose of this section is to discuss languages and notations in which formal models of software proc-
esses could be represented and then enacted. The word "enacting" has been used instead of alternatives such
as executing or interpreting. We wish to preserve the concept that the mechanism for running process
models is a symbiosis of human being and computers, and at the same time not to hint at particular roles for
either partner. Executing has strong connotations of machine execution; interpreting can denote activities in
man and machine which arc very different; enacti-g was chosen as a neutral and previously unadopted term.

Enactability simply means that human beings involved in the software process receive computer guidance
and assistance in what is an extremely complex activity. Put another way, models are not just used "off-
line," as a means of studying and defining processes, but also "on-line" while processes are being carried out,
as a means of directing, controlling, monitoring, and instrumenting them. To help clarify what enactment is
not, we assert that it is neither (a) writing programs that wholly mechanize software production, or (b)
writing programs that wholly prescribe what human participants in the process are to do.

Process enactments are written to define possible (allowable) patterns of behavior between non deterministic
human beings and systems constructed of computer programs. Modeling and programming the software
process is an experimental testbed for modeling and programming human-computer activity in general, for
introducing a new and potentially much more highly productive way of software system-building.

2.2.3.1 Enactment Formalisms

Language is a central issue. There is a "horse and cart" problem here: to find out what language features we
need, we need to write enactable process models; to write creative models, we need the appropriate language
features. An issue is that tradeoff between the expressive power of a notation and the ability to reason about
or analyze the process model beforehand. A language design tradeoff involves subsetting expressive power of
a notation to prove some useful properties about the process, or, conversely, providing more expressive
power but limiting the ability to reason about the process.

A prescriptive interpretation of a Process Enactment Language is essential since it is desirable to use the
language to express plans (i.e., descriptions of processes that are intended to take place in the future).
Prescriptive means that the process is laid down as a guide or rule of action. Plans can either be followed by
choice or enforced, but they are prescriptive and sometimes proscriptive (that is those things that are for-
bidden are described as well). The prescriptive interpretation of a language requires some form of interpreter.

2.2.3.2 Enactment Architectures

This section focuses on the mechanisms needed to enact software process models from tl-e viewpoint of
three key aspects of architectures: information, operations, and operators (i.e., entities that apply operations
to information). The interactions of these aspects, of course, are important as well. The operations view of
process modeling is a traditional activity of Project Management developing a network of activities for their
project, at an appropriate level of granularity. The operator view of process modeling takes the personnel
roles that will be required for a development effort and allocates the activities or process tasks identified to
appropriate personnel roles. The process information base view associates the data objects that both the
activity process view and the role process view require to pennit process enactment.

lherc is no single best approach for modeling procc,'es for enactment, but to enact a process, all three views
of process are required. A logical approach to process modeling is to pertorm "activity-oriented" process
modeling to identify threads of project activities alon2 with "role-oriented" process modeling to allocate thece
activities to project roles, while at all times Identifying required data objects. It is probably best to develop

process models incrementally and to plan to examine all three views within each increment.

14 S I ARS Iask IS-I5 Software Iprocess I ools and I edmiquc I,hir;ition Report Version 1.01

Process Information Base: When enacted, executing process models must manipulate information. The
information differs from that needed for product programs in content, in structure, and in the properties of
the supporting operations. The information base required to support enactable process models includes
three separate kinds of information. The first comprises the process data, which consist of information
relating to the execution of the process model (e.g., lists of project activities to schedule or plan). The
second is process state, which consists of the internal state of the executing process model (e.g., a process
program counter). The third comprises the product data, which consist of the project documents (e.g.,
schedules, budgets, module specifications, code, etc.)

The list of information base requirements includes: objects of varying sizes, varying degrees of persistence,
nested transactions, very long transactions, complex and programmable relations among objects, triggering
mechanisms, automatic inferencing mechanisms, dynamic types of schemas, multi-user sharing with associ-
ated locking mechanisms, versioning, powerful query languages, partitioning and view mechanisms, and tol-
erance of inconsistency. An information base for process models must also support multiple, dynamic,
programmable notions of consistency.

Operation Classes: The execution of process models requires several classes of operations. The two most
familiar operations are control flow and composition. Control flow is a well-understood notion. Composi-
tion means arranging lower-level elements into a higher-level structure, for example, as in the way P10742
process fragments are composed into a process model. Two other operations -- instantiation and instrumen-
tation -- are both essential to enacting process models and different from operations available in most pro-
gramming languages. Instantiation is binding an abstract notion to a concrete instance. In programming
languages, abstract data types are instantiated to concrete representations and implementations, programs are
instantiated into executing processes, etc. Instantiation is more important in the context of enacting process
models. Instrumentation is the way in which mechanisms are applied to carry out the execution.
Instantiation can also be taken to mean the way metrics are attached to measure process attributes.

Instantiation is necessary to get the dynamic and flexible characteristic demanded by executing process
models. Many aspects of process models require instantiation: activities can be instantiated in various ways,
depending on whether they will be performed manually by people, automatically by tools, or semi-
automatically by a combination of people and tools; the next event to execute can be dynamically
instantiated according to the current state of the process and (perhaps) directives by users; unusual condi-
tions can be handled by instantiating exception handlers; and so on. Second, instantiation need not be com-
plete, as in most product programming languages. This is so in part because of the dynamic nature of
executing process models and in part because of the expected long execution time of process models. The
dynamic property demands instantiation because not all decisions can or should be made statically.

Operator Types: Operators are the entities that apply operations to information. For product programs
only the hardware (or a virtualization of hardware) actually performs manipulations. For process enactments
however, two operators exist: (1) the real and virtual hardware and (2) people. It is perhaps this added
operator that most clearly distinguishes enactable process models from product programs. People must be
considered to be operators because there are many fundamental operations that must be performed that
cannot be performed automatically. For instance, during execution of a process enactment, a manager may
be "invoked" to select a particular schedule or to bind a particular programmer and task together. Some of
these, such as defining and selecting a schedule, can take a long time and can have significant consequences;
hence, the notion is really quite different from simply entering data to a product program.

2 [he III 1 I10-4 standard for sofltware likccle process is a lraft stndard \x hich wa;s prepared by tife So\ftware I ife

(_%de Ilroccsses \Working, (Iroup of the Solhwarc Frnvineering Standards Suhconunittec under the sponsorship of the
I echrr ical ('omitle on) Soft\tarc I negincerir ol tihe Ilf I(omluter Sociotl.

IBI S IARS lask IS-15 15

2.2.3.3 Enactment System Requirements

Ideally, to support the manipulation of related process model aspects, a system for process enactment must
contain support for the following capabilities:

Products: identifiable bodies of information, describable by decomposition to primitive types, or in
terms of a class system (inheritance, specialization).

Activities: the transformation of inputs to outputs, describable in terms of inputs, outputs, preconditions
and postconditions; conditions may refer to some global "state." Conventional "project management"
features, such as durations of activities and date information, tends to be variable, and means to express
variability need to be part of the language.

Agents: things that perform activities; these may be human or computer-based; particular human agents
may operate in a number of different roles; agents may have different "views" of the process. Presumably
the preconditions of an activity may refer to the capabilities of an agent, but there has been little thought
of how this might be represented. An activity description needs to indicate the capabilities required of
the performing agent; such requirements need to be related in some way to the functional definition of
an activity. Allocating agents to activities requires a "type system" for resources and should consider
what capabilities would be needed for agents (determined by looking at "natural" processes and the
human use of tools).

Control flow: Composition of activity instances using conventional notions of sequence; selection and
iteration or Prolog-style backtracking.

Communication: Synchronization of activities and transfer of products between agents; notions of
dialogue and commitment between agents. Modeling dialogue and cooperation between agents appears
to provide an alternative approach to techniques such as dataflow and state-transition modeling. Coor-
dination technology may serve as a useful approach here.

Decisions: Choices made in the light of some "goal"; creative actions. The notion of "goal" support
needs more investigation. We may well have goals that relate to properties of the process itself (such as
duration, resource utilization, delivery schedule, public relations), as well as goals that relate to properties
of products. The way that decisions are made in the light of goals and the non determinism that this
implies need to be looked at.

Long-term execution: Process enactments are expected to run for long times and they are likely to
change while they are running. The effects of persistence and change are not currently well understood,
and there is little in current languages or programming systems to provide guidance. For example, if the
enactment changes, how is a trace of execution from the old version to be interpreted.

Concurrency and communication: Process enactments will be highly concurrent, and communication
among agents and processes is a central issue. This will require more support than is currently available.

Nondeterminism: Although process enactments will have to deal with the traditional form of
nondeterminism (i.e., having several things that can be done at a time), the greater source of
nondcterminism will be due to the human factor.

Views: Multiple views or representations of process models will be necessary to avoid the problem of
having to read the "code" to understand the process. Three different types of views are needed: (1)
views as projections that present certain information to the user while hiding the other information, (2)
views as different ways of representing the same information to the user (e.g., graphical and textual), and
(3) views to support navigation (e.g. scoping) over a defined hierarchy of levels of process abstractions.

The term "view" has been used in two different ways: (1) to mean the restriction of an agent's "domain
of discourse" to some part of the process (this is like the database notion of view), and (2) to mean the
diffrcnt "dimensions" of a process - for example, technical, organizational, and managerial dimensions.

1'sine different views as an aid to understanding the process implies that it should also be possible to tNOe
those Vie\\s to change the model when necessary. The problems with maanipulaling base table data \ia

16 S I.\RS I ask IS- 15 Software Process lools and I echniques I xaliuation Report Version I1

views are well known in the database community. Working backward from a modified view to change
the base information can be very difficult. An alternative is to store each view explicitly, but there are
still problems in maintaining consistency among the various views.

Role Support: It has been proposed that there is a close relationship between role and view, with a view,
plus a role defining a "virtual agent." Important concepts are: role "type" (i.e., manager), role "instance"
(i.e., the manager of a particular project), and role "occupancy" (i.e., the binding of an agent to a role
instance). Further, the role is a way to assemble a view of the processes (tasks or activities) for which a
particular role type is responsible.

Rules: Rules can be used, in one form or another, to specify what is to occur. Triggering (i.e., when do
rules actually fire) is an important issue to be explored. Accessibility of the rules for understanding the
process is also an important issue. Both static and dynamic accessibility are necessary. Static accessi-
bility involves understanding individual rules. Dynamic accessibility involves understanding what actions
a given set of rules produce or. conversely, what rules were used to produces a given action.

Sharing and containment: Complex documents may contain many objects, and an object may be shared
among several different documents. This poses significant problems for multiple agents who share access
to these objects and have the ability to make changes in them. Traditional database notions of consist-
ency and commitment are not likely to be sufficient.

Hierarchy and decomposition: The (possibly concurrent) existence of subactivities and their parents will
require special language features. For example, it may be necessary for a process or activity to "know"
that it has a parent or concurrent siblings.

Types: Process enactments will require rich type systems to describe the various artifacts produced in
the software process as well as the relationships between them. It is not the artifacts themselves but the
relationships between them that provide meaning, and it may be desirable to include relationships among
the types in the type definition. Language features for process enactment will also need to support type
evolution -- changes in the definition of the type during the process.

Extensibility: A programming system for process enactment wiln need the ability to accommodate new
ideas and new notions of process as they change.

Reuse: What does it mean to reuse a process enactment and how do we do it? A number of potential
approaches to reusing process components include: development of proper abstractions, appropriate
levels of granularity, late binding, and development of "generic" programs or program fragments. Reuse
should not be limited to the code process enactments; specifications and designs are also potentially reus-
able.

Process change: The issue of process dynamics is concerned with aspects of how things change. There
are several degrees of change in the process model life cycle: changing instances, changing types, type
systems, etc. Another important aspect is that of process generation and process modification while the
process is executing in real time, either by self-modification or external modification.

Dynamism is the ability to change the enactment while it is executing. In a model without dynamic
character, a trace of execution of the model would contain only components that were built into the
original model. In a dynamic model, an execution trace might include components that were not in the
original model. The minimum amount of dynamism required to support process enactment is type
instantiation and process instantiation. One way of handling changes is to delay the binding or
instantiation until as late as possible.

Several questions related to dynamism in the software process arc unresolved. \Vhat is the source of
dynamism in process models? Modifications might, for example, be made in response to exceptions, or they
might be related to higher-level goals such as optimization of the process. Should process enactments be
self-modifvInv. modified by humans, or both? Self-modification can be dangerous; there is the need to
handle certain conditions (e.g., exceptions) automatically. Two related questions are: I low much dynamism
is desirable in a process enactment? I low much is necessar.

11M S YXRS lask IS15 17

2.2.3.4 Engineering Enactable Models

The following tradeoffs must be considered in developing enactable process models:

1. A suitable compromise must be found to settle the tension between what should be included in the
enactment mechanism and what should be in the associated process information base.

2. The "proper" level for the supporting enactment mechanism must be determined.

3. Instantiation and instrumentation are requirements for any enactmcnt mechanism.

4. The requirements of the information base must be carefully defined, and must, in particular, permit spe-
cific forms of inconsistent data to be retained.

5. The problems of how people interact with enacted process models are key; this includes the social issues,
the form of the human-computer interface, buy-in, cultural fit, etc.

There is a life cycle for software processes analogous to the life cycle for software products. Requirements
are formally or informally defined, the processes are designed through several levels of refinement, process
enactments are constructed, analyzed, tested and debugged, processes have components, versions and config-
urations that evolve over time, and process components may be reused across a range of software and other
kinds of development projects. There are meta processes that guide this life cycle.

Requirements: Deciding what can be expressed in a process model and what cannot happens during the
requirements phase. This may be with respect to a particular formalism selected a priori, or it may be pos-
sible to put off formalism selection until the design or even construction phase. Certain requirements cut
across essentially all processes, such as hierarchy, concurrency, and nondeterminism. Some requirements
simply cannot be met within a formalism. One view holds that proccss models are primarily theoretical
tools for understanding processes, so computability, decidability, and so on are not prerequisites. Another
seemingly opposing view holds that our understanding of some phases of the software process is too imma-
ture for modeling - in the context of actually enacting the models.

Design: Devising a means, within the chosen formalism, for meeting the requirements happens during
design. This includes breaking the overall process into subparts (sometimes referred to as architecture),
developing data and process models, etc. Trace the history of actual projects and then design models by
generalizing from the components of these traces. The State Change Architecture approach < 26 > provides
components of a model statically, but the links between the components are constructed dynamically during
enactment of the process. Process prototyping merges design and construction phases to some extent by
advocating, with a distinct concern for evolution and controlling the impact of change.

Construction: Actually writing the process model or program within some formalism is done during con-
struction. We can imagine the application of various programming tools such as language-based editors,
cross-reference tools, etc. (e.g., Aspects' use of windows, views, and defaults.) Artificial intelligence tech-
nology can be applied to reasoning about a process with respect to its "purpose," that is, the goal of the
process in the particular context. Other advanced tools, including specification generators and analyzers,
functional simulators and hypertext can be employed. For large processes there will be models that have to
be composed. Enactable models are then translated into some internal form appropriate for the formalism.
The notion of a software process architecture has bccn dcfincd to support adoption of common technology
across processes.

Testing and Debugging: Testing can be done via simulation; e.g., an activitY coordination assistant that
provides a testbed for new policies. Alternatively, the only testing may be by use in actual projects. l)ebug-
ging can be done off-line while a project is in progress. A tool for experimenting with process programs
could be developed, in the form of dialogues, by running them backwards and forwards, directly modifvingz
their stores and so on.

18 S IARS Task IS-I 5 Sofwmare I'roccss I ools and I echniqucs Ixaluation Report Version I.0

Evolution: Processes will evolve over time. The problem of change propagation exists: updating the
behavior of software development environments and the contents of software artifact databases to reflect
changes in enacted process models. This is a distinct problem that deals with actual conversion of existing
artifacts and perhaps existing tools, as well as the retraining of users.

Reuse: Process modeling would not be very effective if new processes had to be constructed for every soft-
ware project. If one views the environment and the model as o -hogonal, this may lead to greater opportu-
nities for reuse since the model is not tied to a particular enviroix. -nt. Reuse activities include selection
adaptation, assembly, cataloguing, and assessment that apply equally well to reuse of software components
and reuse of subparts of software processes.

2.2.4 Process Improvement

By defining processes for developing systems, of which software may be a critical part, an organization pos-
sesses a tool to ensure great consistency in the way systems and software will be developed. When an organ-
ization has defined, at an organization level, a process for supporting software development, the organization
has reached the level of 3 on the SEI Software Process Maturity Capability Model. However, as the defi-
nition of processes for developing software is a human activity, defined processes may be suboptimat and in
need of improvement. Further, a good process may deteriorate over time if it is not continually examined
with respect to the technology base to support software development or the changes made in the corporate
culture that affects software development. It is possible to define a suboptimal process that may have a
less-than-positive impact on the organization that uses it, possibly worse than having no process defined at
all. Thus, there is a need to constantly monitor and analyze processes to ensure that if they are in need of
improvement, they will be improved. Processes can only really be tested through use. Some tools such as
the Software Process Management System (SPMS) permit process engineers to analyze the performance of a
defined process, before its deployment for use. H-lowever, user experience and measuring the results of the
use of process enable us to improve the process.

2.2.5 Metrics

Quantitative measurement of the results of processes, and the processes themselves, provides the basic ingre-
dients for studying trends and explaining qualitative observations about processes such as "I don't know
exactly what is wrong with this process, but it appears to waste a lot of my time, and just doesn't work very
well for me." Lord Kelvin is attributed with expressing the idea that 'if it cannot be measured, it cannot be
improved.' By establishing metrics, associating them with an organization's process, and analyzing them for
indicators where processes require improvement, an organization can achieve an SEI level 4 on the Software
Process Maturity Capability Model.

There are two basic categories of metrics that assist process engineers in analyzing and improving processes,
namely, product metrics and process metrics. Product metrics are a measure of the quality of a product
produced by a process. Thus product metrics are an indirect indicator of how a process is working. If the
product being produced is suboptimal, so must the process be that was used to produce the product.
Process metrics are measurements established and taken directly from the performance of process tasks. In
this way, process metrics are a direct indicator of process performance. We shall briefly describe a scheme
for product metrics and a scheme for process metrics.

To prevent metrics analysis from becoming a draconian management tool, metrics, both product and
process, must be collected and analyzed at an organization level.)ata collection must be geared to col-
lecting aggregate trends and analyzed as such, and management misuse of them must be avoided.

II\1 STARS IaAk IS-]5 19

2.2.5.1 Product Metrics

Product metrics are used to examine factors associated with the products that can be analyzed to identify
aggregate trends to isolate and correct process problems. Key to effective product metric collection and anal-
ysis for process improvement is the development of an effective measurement model that identifies the cri-
teria for metric selection and the way the metrics will be employed to support process improvement. Some
of the requirements for an effective measurement model < 38 > for a process management capability include
the following criteria:

I. Measurement coverage should include the architectural levels required by the executable process model
(e.g., System, CSCI, CSC, CSU).

2. The model should provide for aggregation of measurements from the low levels of software components
to larger components.

3. Measurements should cover phases of the life cycle (e.g., design, coding, etc.).

4. Measurements should cover documentation and software components.

5. Measurements should be related to intuitively meaningful concepts of quality.

6. Measurements must be explicit so that they may be represented in process models.

7. Implementation of the measurement model must be tailorable and extensible.

8. Ideally, historical data concerning the values of the measurements should be available to aid in their
interpretation.

The term measurement model refers to the relationships of individual metrics to the software development
process.

Measurements must be available for each level of the software component (e.g., CSCI) that is to be created
by the executable process model. This enables the use of these measurements in the validation task, which
evaluates the success of the process. Because the quality of a software component is partially determined by
the quality of its parts, one must aggregate the values of measurements of the parts to assist in determining
the quality of the larger component.

Measurements must also be available over the domain of the software component. Different measurements
are appropriate at different points in the life cycle of a software component. Documentation is a major
deliverable item in software development. The quality of this deliverable has a major impact in the long-
term costs and quality of the software product. Measurements of the quality of the documentation must
also be available within the measurement model. The measurements in the model must be related to intui-
tive concepts of quality.

Reusability plays a large role in the STARS SFIC process model. Other intuitive concepts, such as porta-
bility, modularity, and generality, are related to reusability.

The measurement model must be related to abstract notions so that one may intuitively gasp what is being
measured.

lven though the measurements must be related to abstract concepts, the measurements themselves must be
explicit so that they may be represented within the process model. This implies that very specific questions
or measurements must be present in the model rather than very gcencral questions (e.g., Is the CSC free of
microcode instructions? vs. Is the CSC of hih quality?). The measurement scale may varn from nominal
(e.g., yes vs. no answers) to numbers along a continuous scale. It is important that the questions and the
formulas be known and available for use by the process model.

20 S FARS lask IS- 15 Softw\are Procc S I onIs Hld I]Tlniqucs I \aalwaiotn Rcport \'crsioi 1.(I

As Ross has noted < 29 >, metric collection can drive model refinement. It is likely that as the process
models evolve, the measurement model will also evolve. The implementation of the measurement model
should be extensible and tailorable so that this evolution may take place.

The RADC Quality Framework: The RADC Quality Framework < 40 > describes a quality model in which
a hierarchical relationship exists between a user-oriented quality factor at the top level and software oriented
attributes at the second and third levels. Figure 4 represents a portion of this model with the factor effi-
ciency. Figure 5 on page 22 shows the relationship of the factors and criteria in the framework. The metric
elements (the specific questions applied to a project under development to assess and predict quality) are
applied at various levels of software architecture and at various points in the software development life cycle.
By using the framework, one can define the data that must be gathered on specific architectural units at
specific points in the life cycle. The framework provides a series of formulas that relate the data to specific
criteria to be measured and finally to the actual factors themselves. The factors that can be selected by a
user and their relationships to various criteria are shown in Table 2.

Factors are
Efficiency _management

oriented
views of Product
Quality.

Effectiveness- Effectiveness - Effectiveness.- Criteria are
Communication Processing Sto software oriented

Figu ec otienotes EttctQitey Eramectveesrke.iens

Figure~~~~~povd 4.PotonoatelityuliyFrmwok

The RADC quality framework, selected for use in SPMS, is based on the need for a measurement model
and the belief that the factors and criteria represent reasonable concers in the software development process.

There is no clear evidence that the specific measurements themselvcs are optimal, nor is there any evidence

to indicate what particular values of specific measurements should give one confidnce or indicate an area

that should be of concern. Although the RADC Quality Framework does not meet the requirements for a
measurement model discussed in this section, it is extremely useful in providing an initial set of measure-

ments that could be used in relation to executable process models. he RADC Quality Framework is

explicit and hierarchical and is related to various software process phases. This meets the other requirements
for a measurement model. Use of the RADC framework in conunction with the knowledge-base represen-

tation provides the detail needed for a computer represcntation of a software process model to be executed.

IBM STARS Task 1S-15 21

SOFTWARE QUALITY FRAMEWORK FACTOR

CRITERION C
,,.3-- 9 .; . - =

U 2 >

Accuracy -I I I

Anomaly Management .x x1 _X __

Autonomy X
Distributedness X -

Effectiveness-Communication X f
Effectiveness-Processing X I--
Effectiveness-Storaee X I i _ _-

Operability T x i
Reconfigurability X j_
System Accessibility x - - -

Trainine X I
Completeness X _I
Consistency xX
Traceability x[

Visibility I , x x

Application Indcpendence 4 X
Augmentability X l I
Commonality X
Document Accessibility X

Functional Overlap X
Functional Scope j X
Generality --------- x X X
Indcpendcnce - [. l XX

System Clarity , x

System Compatibility Ix
Virtualitv X

Mlodularity -x lxix xIxx xl xx
Sclf-Descripuvcncss I X1 x x x x X
Simplicity I lx I I x x Ix x

Figure 5. Software Quality I ramework Factors and Associated Criteria.

22 STARS Task IS-I5 Software Process Tools and Techniques |-valuation Report Version 1.0

'The RACD quality measurements, in conjunction with explicit criteria for determining the success or failure
of a quality goal, allow their use as validations for the success or failure of processes within the executing
process model.

It should be noted that there are other sources of product metrics other than the RACI) Quality Framework
metrics. The selection of product metrics depends on the goals for a prcject or organization's process
improvement goals and should be selected to support those goal .

2.2.5.2 Process Metrics

Venkat Ashok and Bruce Reed of UES have identified a set of metric functions and attributes for incorpo-
ration into the Knowled".e-ntegration Shell product < 28 >. These metric functions and attributes can be
used to record and accumulate process information for the process tasks of specific user roles. The KI Shell
Process Metrics represent an example of process metrics that can be used for analysis of aggregate trends.
lowever, it is important to recognize that there arc other process metrics that could be employed for anal-

VMSi.

By providing a set of shell functions, the start and stop times for each measured activity can be stored in
predefined information frames aa~d attributes. From these information frames and attributes, process metrics
can be displayed, both in graphical and text formats. The following metrics have been identified to
parameterize the behavior of proposed KI Shell process metnics:

1. QUEUE: QUEUE is used to measure the time from when a work unit is created and ready for proc-
essing until the time when work is begun on that unit. Thus if queue time is greater than the acceptable
aggregate threshold, the process task should be examined.

2. WAIT: After a role (ROLF. A) has begun to process a work unit, a situation may arise where that role
(ROI.I' A) notifies another role (ROLE B) of processing required on the current work unit. The time
that the first role (ROLE A) waits on the other role (ROLF B) to complete its job is considered WAIT
time. Again, excessive wait times may mean the process should be examined.

3. PERFORM: PERFORM represents the ,-ine that a role spends actively processing a work unit. Exces-
sive amounts of time spent on a work unit may indicate a process problem.

4. I)LE: Any time a role voluntarily suspends work on a unit, e.g., lunch break, is recorded as IDLE
time.

5. SPAN: The total time elapsed from when a role begins processing a work unit until it is completed.

6. ITEM: A generic metric that can be used in any manner. Associated with all the above metrics are the
actions" that can be performed on them. These actions are parameters of the metric functions and affect

how the functions act upon the metric.".

For each of the above metrics there is a set of predefined attributes used to store the start, stop, and accumu-
lated times. The action parameters determine which of and how the attributes are set. These action parame-
ters are:

I. ST.\R': Sets the start attribute of the specified metric to the current time (in seconds).

2. SIOP: Sets the stop attribute ()f 'he specified netnic to the current time (in seconds).
...(: ('alulate, the difrrce in seconds between the start and stop times for tle specified natWnic

in1 adds th1iat vale 1o thC CuTent value of the 'accum" i'-ribute ol the spCcified neific.

I rom tile anal\ ,is of sclccled proccss ellCtric, lor cach process or set of process tasks, v l1,able data ol the
Cxecalion of tile processes lic,,clves can be used to identif trends, both positivc and ncgative, th,1 can be
used to support process improvmcncnt.

ll0\l S LA.-RS la,,k I,-I15 23

Intentionally left blank.

24 S I.\ RS I ;sk IS I 5 So harc Prncess I ools ard I echniqucs I v aluation Report \Vrsion 1.

3.0 STARS IS-15 Task Organization

IBM STARS Task IS-15 was organized into three major tasks to satisfy our procc objectives. These three
tasks were:

1. Software Process Representation

2. Software Process Enactment - Cleanroom Software Process Case Study

3. Process Products Coexistence Strategy.

The "Software Process Representation" task comprised three subtasks:

1. SPMS Evaluation Prototype Demonstration and Training - to demonstrate the SPMS evaluation proto-
type, to gain interest and commercial support for cofunding during the -TF increment, and to prepare
materials for training the "SEI/STARS Process Asset Acquisition" group in the use of the SPMS Evalu-
ation Prototype.

2. SPMS RISC System/6000 Port Analysis and Planning - to assess the feasibility of porting the Apple
Macintosh-based SPMS prototype onto the IBM STARS SEE platform, namely the IBM RISC
System/6000 running under AIX, and to prepare a plan for doing so.

3. Process Representation Using Box Structures - to examine the use of box structure notation as a candi-
date notation for recording process knowledge.

The Software Process Enactment - Cleanroom Software Process Case Study comprised two subtasks:

1. Case Study Specification and Validation - to define the "Cleanroom Software Process Case Study"
problem, to specify a concept of operations for a system to support the Cleanroom Engineering Software
Development Process (the "Cleanroom Engineering Process Assistant" Specification) and validate the
implemented prototype against the process and specification prepared.

2. Case Study Implementation - to implement the "Cleanroom Software Process Case Study" Problem as
required by the "Cleanroom Enginrering Protoype Assistant Specification."

The Process Products Coexistance Strategy Task involved examining how selected products -- KI Shell, HP
SoftBench and SPMS, each of which provides a needed software process management capability -- could be
integrated to provide a unique software process management capability.

Figure 6 on page 26 iliustrates the IBM STARS "S" Increment Process Task Team and identifies all partic-
ipating team members.

SI,.\RS IS-15 Iisk (o)t',x'mi/;otionl 25

0
w

00

w T)) LU<

C) :: 2 LU

0~ W 2 ccw I.

000

cc z...3
U)z mWO< -I

Cflwec W o crc-3r1

0 0)0

z M CaC .
w W 0 o f~ 0~R

. 0 x4j
F- cna) u,<4 .Cn

V ~ - wZ I

LL 44 U. W 3z

Fiue .IB TRS' IcemnOrocs ak em

26 STARS- Tas 15-1 SfWar Proes Tol0n ehiusEa to eotVrin

4.0 STARS IS-15 Candidate Tool Acquisition

This section describes the tools selected to support STARS Task IS-15 and describes constraints on the
selection of tools, as well as the rationale for tool selection.

4.1 Constraints on Tool Selection

1. IBM examined several candidate tools to supporting software process modeling and enactment.

2. Constraint criteria on tool selection:

a. Availability to support "S" increment work

b. Potential availability of tool for the 1993 STARS SEE

c. Product available currently as commercial off-the-shelf (COTS) or as a stable prototype

d. Potential for migration to multiple platforms supporting POSIX.

4.2 Tool Selection for Providing a Software Process Modeling
Capability

IBM has selected the Software Process Management System (SPMS) as one of its candidates to support
software process modeling. SPMS is one of the few tools designed to support the concept of modeling soft-
ware process and is why IBM has decided to examine how to migrate SPMS to its RISC System/6000 plat-
form.

Existing CASE tools that can be used to model aspects of process, support process modeling in a non-
integrated fashion. Although some CASE tools do support the simulation execution of systems, their useful-
ness as tools for process engineers is somewhat limited. System simulation capabilities for tools such as
STATEMATF and TEAM WORK/SIM are intended to simulate the execution of system designs. Although
process modcls can correctly be viewed as process systems, the simulation of process models requires a dif-
ferent 'look and feel" than do other system designs in that humans, such as program managers and engincers,
have to be modeled as process agents (enactors of process). SPMS was designed to be a tool for process
engineers to model and simulate processes. Further SPMS was an attractive candidate for the following
reasons:

1. SPMS's availability to support "S" increment work

The SPMS prototype is available to support process modeling experiments on an Apple Macintosh plat-
form. Further, it serves as an excellent "requirements" prototype for migrating SPIMS to the IBM RISC
System/6000.

2. The ability to make SPMS available for the 1993 STARS SIT

The Software Process Modeling System was the most mature software process modeling capability that
could potentially mect the objectives of supporting reuse-based proccss sstem modeling.

l'he SPMS prototNpc was desilned to take advantage of popular coiniiercial-ot'-thc-sliclf tools that can
be found on a number of NIN \workstation platforms including thcI IM RISC S\stem 6(000 under
AIX and SI\ workstations under 13S1) 4.6. These tools inclidc Oracle and NFXPERT Object.

3. SPMS is currentl available as a stable prototype, which Ila." the potcntial to become a commercial off-
the-shelf product.

S I1 RIS IS a5 andidatc I o0 1cquisition 27

SPMS is currently a stable prototype. The SEI is planning to evaluate SPMS for use in support of their
process modeling and asset capture activities.

4. Potential for migration to multiple platforms supporting POSIX.

SPMS was designed around integrating COTS products that are generally available on POSIX-compliant
UNIX platforms. SPMS will be developed employ~ng industry standards, such as X-Windows and
OSF/Motif and the COTS products selected. Application integration toolkits, such as the services pro-
vided by HP SoftBench, may differ from platform to platform, and represent the area where SPMS
customization for each unique platform will be required.

The decision was made to begin assessing what it would take to migrate the existing SPMS capability to the
IBM RISC System/6000 to provide the IBM SEE with a tool to support process modeling and process
enactment. In summary, this decision was based on the fact that SPMS has already demonstrated its ability
to support process modeling and process simulation, and SPIMS holds the potential to support process mon-
itoring.

For further information on the Software Process Management System, please refer to the following STARS
reports:

I. "A Software Process Management System for the STARS Software First Life Cycle," IBM STARS
Deliverable CDRL Number 3016, 29 October 1990.

2. "User's Manual for SPMS," IBM STARS Deliverable CDRL Number 3118, 17 June 1991.

4.3 Tool Selection for Providing a Software Process Enactment
Capability

IBM selected KI Shell (Knowledge Integration Shell) to support STARS software process enactment exper-
iments. KI Shell is one of the more mature software process enactment capabilities available as a commer-
cial product. It is available foi immediate use on an IBM RISC System/6000. Further, UES, the developer
of KI Shell, is consulting with IBM AIX-CASE planners on software process management capabilities
desired for future releases of IBM's AIX-CASE.

1. Availability to support "S" increment work

KI Shell is the only capability for performing process enactment experiments on an IBM RISC
System/6000 platform. Because KI Shell has several years of testing behind it, IBM has selected it as its
candidate software process enactment tool to support its STARS "S" increment work and at the same
time, to evaluate its potential for supporting the 1993 STARS SEE.

2. Potential availability of tool for the 1993 STARS SEE

K I Shell is a commercially available product that has had significant use in implemcnting manufacturing
processes and some experience in supporting software processes.

Work is currently going on to examine making KI Shell, PCTl-compliant to work with existing
PCTl'-based SEE frameworks.

3. Product available currently as COTS or a stable prototype

K I Shell is commercially available. IFurther. baed on the "Cleanroom Software Process Case Study"
inplementation work, several ideas have emerged to improve K I Shell's ability to support software
process enactment.

KI Shell has been used successfully to implement a variety of manufacturing processes. Background
information about KI Shell will be provided in the next section.

4. Potential for migration to multiple platforns supporting P()SIX.

28 S I \ RS I ask IS-I 5 Sotim arc Process I ook and I cthrriqucs I %aluatiom Report Version 1.0

KI Shell is a commercially-available product for the IB.M RISC System/6000 running under AIX. It is
also available of the following platforms:

" liP 9000 under tIP/UX

" SUN 3 under SUN/OS.

Further, porting the KI Shell to other UNIX environments can be accomplished in a one- to three-
month time frame. This is based on the port of KI Shell from the IBM PC/RI' AIX implementation to
the following UNIX versions:

" IIP/UX - 2 person months

" SUN/OS - 3 person months

" AIX - 1 person week.

S I-\RS I (arididt,: 1 ool .Acquitsition 29

Intentionally left blank.

30 S I *\RS I ask IS- I5 Softwarc IProcc- I 001S Mrid I echniques I - aluation Report Versionr 1.0

5.0 The Knowledge-Based Integration Shell

The KI Shell (Knowledge-Based Integration Shell) is a commercially available process execution and control
shell. This shell reflects the process-based integration concepts and was conmercialized using Phase II SBIR
funding from the Air Force3 as well as other sources. The KI Shell process definition and enaction mech-
anisms have been tested and can be viewed at the McDonnell Douglas's Team Columbus production site
where KI Shell is used for improving the productivity of complex manufacturing processes involving multiple
roles. At Team Columbus, the use of KI Shell demonstrates how the STARS vision of nctwork-based
collaborative development can been achieved.

Under the "S" Increment of the STARS Program the IBM STARS S-15 Case Study Implementation Team
employed KI Shell to support process modeling and enaction. As determined in the IS-15 increment, the KI
Shell currently does not have a direct competitor in the IBM/AIX market. Further, during the "S" incre-
ment, the feasibility of using the KI Shell to model and enact processes, such as the Cleanroom Process, has
been demonstrated by the IBM STARS Team.

The UES staff on the IBM STARS S-15 Case Study Implementation Team has a twelve-year history of
research and development in problem areas directly or indirectly related to those of STARS. UES has devel-
oped, under contract to the USAF ManTech Program, and commercialized a unique object-based meta
system -- the KI Shell -- which can take any process and method description and enact it to provide active
support for any process, including software engineering processes.

5.1 KI Shell View of Process Technology

Process related technologies include process modeling, process simulation, process management, and process
enaction. The KI Shell features support Process Modeling, Process Enactment, and some aspects of Process
Management. These features have been developed and validated through extensive application in concur-
rent, collaborative engineering.

Process-related technologies for collaborative work flow must provide features for at least four related aspects
of business/technical work-flow processes based on the organization:

Generic Process Modeling to acquire and specify the process knowledge necessary to perform the enter-
prise activities. This includes the ability to specify enterprise roles and responsibilities (activities that
must be completed by a role), relationships between roles and the external views of functions and infor-
mation necessary to perform individual activities.

" Process Simulation to determine precisely how different activities in a specific model consume resources
over time and, thus, to identify bottlenecks and areas that need attention for continuous process
improvement.

" Process Enactment to provide decision support and to assist in completing each activity in a model by
providing information on a need-to-know basis to make decisions, using operations to determine the

external vicw, and recording key decisions.

" Process Management to provide a management view of the actual status of decisions with respect to
each activit, in the work-flow process by which product information is produced. Project Management
is also an aspect of this, as it is necessar- to plan or replan the use of resources for different activities.

L I S c ritract under Phace I S11R.

I he Knlede- lased Inte'ration Shel 31

The KI Shell Development Environment allows the modeling of a method. A KI Shell Method is a model
or description of roles, activities that constitute the work-flow process that must be completed by each role,
applications (or implementation systems) that must be invoked within activities, and data that must be
manipulated. In the KI Shell an object-based approach is used to record and enact a method. As the
method is enacted, precise global process status data are available for management viewing.

The example in Figure 7 is an overview of a method description comprising activity objects, use of enter-
prise data, use of applications, and constraints/controls affecting the decision at each activity. This method
example, developed for the Air Force, supports the die design process for extruding complex alloys, by
employing concurrent engineering practices. More specifically, the first activity is "Product Specification."
When completed, it provides the Geometry, Application, and Microstructure values for constraining decisions
made at later activities. For example, the Geometry constrains the candidate billets selected from a manufac-
turing database during the "Billet Selection" activity.

WORK-FLOW
_PRCSS

Product APPLICATION
Specification_______ ____

-- Process

Billet VS.
Um C SelectionStructureormGEOMelcio BLETR Relationships

CONTAINERS Container
(from CDM) Selection PROCESSSPARAMETERS PROCESS

PARAMETERS

Dign LOAD. DIE
RAM IGEOMETRY1

, ANLYSS II I lecPress

PRESSES ..
INDEX (from CM)

prIomns Perform

PE Extrusion
a,:t' .Simulatio

yownes iFINTE ELEMENT
__ANALYSIS

MO5

Figure 7. Example of a Concurrent Engineering Process Performed by a Die l)esigner Role.

Thc actual geometry of the billet selected by the envnecr becomcs the decision value of the attributc associ-
ated with enaction of "Billet Selection" activity. This value, in turn, constrains the next activity and so on.
"Die Design" is an example of an activity that invokes an application for rough design before detailed finite
element simulation during the "Perform Extrusion Simulation" activity. This activity, in turn, is performed
with the assurance that the needed press, necessary for guaranteeing the appropriate - ocessing conditions, is
available.

32 SI -XRS Task IS-I 5 Software Process I ools and l-echniques Lvaluation Report Version 1.0

Figure 8 on page 33 illustrates how an activity in a process, such as the example in Figure 7, is enacted.
When an activity is performed or enacted, a procedure associated with the activity is executed by the KI
Shell execution monitor. This procedure typically will use enterprise data, examine earlier decisions made
when other activities were performed to assist in the current decision, invoke applications on the right data,
update appropriate attributes of activities and databases, and finally, create process instances for roles as nec-
essary. This is illustrated in Figure 11 on page 36.

CONTROL

ENTERPRISE

INPUTS ACTIVITY OUTPUTS

(Enterprise & DATA &
KI Shell PERFORM DECISIONS
Databases) (Enterprise &

KI Shell
Databases)

MECHANISMS
(People, Applications, Tools) W.,N.

Figure 8. Enterprise Activity Must Be Performed By Using Information / Mechanisms under Appropriate Control.

Activities also can be structured as processes to be performed by different roles in an organization according
to the responsibilities. Coordination between different roles, to ensure activities are preformed correctly, is
also supported by the KI Shell. Figure 10 on page 36 illustrates a process for creating and reviewing infor-
mation. In this example the subprocess instances for roles are dynamically created over time.

"TO-BE" Method design requires interaction with end-users to determine the requirements of the Computer-
Aided Manufacturing (CIM) system. Figure 7 on page 32 is an example of a concurrent engineering process
performed by a single die designer role.

The Knovwledge-Based Integration Shell 33

To use the KI Shell, a method must be first designed for a specific enterprise function. IDEF04 modeling

techniques can be used to define the "AS-IS"5 and "'TO-BE"6 processes. Once a method is agreed upon, a

machine-readable form of the method is rapidly created by the Method Designer, using the KI Shell develop-

ment environment. (See Figure 9 on page 34.) This method description is stored in an SQL database. The

machine readable form of the "TO-BE" method is enacted by the KI Shell execution environment and the
end-users are guided according to the method.

XTRUDER, funded by the Air Force and developed by UES, demonstrates that process execution can reduce

die design time from months to a few days. Dramatic productivity gains have also been demonstrated at GM

Allison. Here the work-flow process involves collaborative design of turbine blades by different roles - stress,

aerodynamics, mechanical, etc.

KI SHELL T . METHOD
METHOD REPRESENTATION

DEVELOPMENT I I." ;,he
ENVIRONMENT DI\osa Us. e

ApI Ica ion nyocition
DEVELOPMENT

AND "METHOD
MODIFICATION IMPLEMENTOR

OF ANY
STARS PROCESS

L r ~- SE ASSISTANT ~.

METHOD
7 RPREENTAN

PROCESS1
J ENACTION ' 2SOFTWARE KI SHELL

ENGINEERS ~ -- **EXECUTION

"':; .. "". ' : " .;: ";""E AFPCA NS ••• _ .SIDATABASES. ..

Figure 9. The Development and Use of KI Shell Method.

IDEFO is one of the modeling tools of the IDEF (ICAM Definition \ethod) methodology. IDEFO is referred to as

the function model which provides a description of a manufacturing system in terms of a hierarchy of functions. The

basic tool of IDEF0 is the activity diagram which illustrates data flow be-.een functions, control and stimuli for a

function, and the mechanisms employed by a function.

5AS-IS' process refers to a system of processes that currently exist to support the development or production of some

product, e.g. a software system, a computer system, etc.

6 TO-BE" process refers to the desired system of processes needed to support the development or production of some

product.

34 SIARS Task IS-I5 Software Process Tools and Techniques Evaluation Report Version 1.0

The term Assistant is used to describe the final software comprising the KI Shell method, the KI Shell
runtime utilities that interpret and enact the method, and the interfaces to the applications. When an
Assistant is used by the user of the CIM system, the method guides the decision-making during the process
(collection of activities). For the current activity, the KI Shell execution monitor invokes the perform proce-
dures that control the invocation of applications and the use of data.

I lic Kno dtoc- BIsed Inicr;aii, i Siell 35

PLANNER
• Release Order for

Production

GROUP LEADER

Review Items

DESIGNER
Provide Missing
Item(s)

GROUP LEADER

Assign Designer : Role Name (WHO)

E e xxxxx : Activity

:PLANNER N - : Signal to execute

" Select New Order 0 an activity of another

" Identify Missing Items role

Figure 10. ACTIVITY & ROLES: To Support a Generic Enterprise Sub-Process.

PROTOTYPICAL
ACTIVITY

jC PROCEDURE

I PREVIOUS DECISIONS
(KI Shell Database)

I INPUTS (Enterprise &
KI Shell Databases)

PROGRAM *5tupsssion
Tramil Data. Invoke

INVOCATION Exatne Outu

OUTPUTS - DATA&
DECISIONS (Enterprise

KI Shell Databases)

Figure II. PERF(ORM, IEENT CAUSFD BY A MOUSE CLICK A I TilE USER IN I1RfIACI: Causes [xe-
cutiun of a C Procedure.

36 STARS Task IS-i 5 Software Process lools and Techniques Evaluation Report Version 1.0

5.2 Summary of KI Shell Features

The key features for modeling processes in KI Shell are:

• Modeling of roles and the structured process to be completed by a role with no programming effort
required.

" Ease of development of procedures to be enacted.

" A library of reusable code available for programming productivity.

The key features for supporting process enactment in KI Shell are:

• Enaction of procedures including invocation of applications on the correct data to complete activities in
the process.

" Guidance for the end-user based on the current activity.

" Maintenance of global process state.

The key hc"'fits provided by KI Shell to support the development of process systems include:

" Knowledge of work-flow process control is made explicit and thus easier to model, customize, and
e~u1 '.e.

" Reduced assistant development time, wvith significantly fewer lines of code are required to develop KI
Shell process assistant (system to support process enactment).

SLayered and incremental assistant development with more done by domain expert and less done by the
programmer.

5.3 KI Shell Concepts

The term Method refers to a collaborative process enacted by different roles, with each role executing a sub-
process using data and tools. In this section we present the Method meta language (a language for defining
methods) related to the unique process enaction technology developed by UES scientists over a twelve-year
period. This meta language is critical to supporting process requirements for STARS, becausc it enables
complex processes to be described and executed. The Method meta language facilitates easicr modification
and evolution of an) process.

5.3.1 Method Meta Language

The term Method is used hcre to refer to a specific software engineering method. On the basis of our long-
term software engincering research efforts to develop a methodology or Method neta language-, we have
concluded that any software engincenng method can be decomposed as a process consisting of activities (or
verbs), data objects (or nouns) created and modified during that process, tool fragmcnts used within activ-
ities. and the roles responsible for performing the activities. More generally, a method is a discipline
("when") hr which product data objects ("what") are created and changed to different states by specific indi-
viduals ("who") using specific procedures ("how"). Some of the key terms of the Method mcia language are:

* Actiil- t:

B'y LIauaIeC \e mean the collection of syntactic and semantic conmentions and the collection of Systen In! cration
I ihrar finition, that are availalble \ia the K I Shell I)evelopment Fnx ironnient. I he interface presentcd is bore 1ikA
in enironnient as opposed to has irn t,, N rite silter'ens in I ()RI AN.

Ihe Kno ledge Ba ed Inte-ralion Shell 37

A basic unit of work in terms of "what" and "how". An activity is a slot with an associated completion
condition. The "how" is described in a C Rule or Procedure with SIL (KI Shell System Integration
Library) calls.

• Attribute:

Placeholder for data values in a process frame. A variety of complex attributes like sets, arrays, and text
are supported.

" Complete:

Status of an activity that allows users to progress to the next activity.

" Data/Information:

Data used or created when performing activities. The data can be stored in diverse sources such as in
external databases, in files, or in attributes of KI Shell process and information objects.

" Method:

Body of knowledge, policies, and procedures that can be created and maintained by multiple roles. Spe-
cifically, a method consists of process frames grouped by roles.

" Method Instance:

History or audit trail of the enaction of the process/method for a specific product.

" Perform, Premodify, Postmodify:

Examples of events that cause rules (triggers) to fire.

" Process Frame:

Aggregation of a set of activities structured by a control construct that determines the sequencing of
activities. The order of activities can be "sequential," "choice," "if-then," etc.

" Process Frame Instance:

Instance of a process applied to a specific product.

" Programming Interface (PI):

A C callable program that invokes the tool on specific data and returns specific values.

" Role:

A collection of activities performed by a prototypical project member. A role is a network of process
frames. A user can execute different roles.

• Rules:

KI Shcll/C Procedures (triggers) associated with activities that assist users in performing activities, propa-
gating values, implementing constraints, etc. The body of the program can have calls to SIL that manip-
ulate the process and information frames. Rules used for computation, monitoring, notification, tool
invocation, and transformation.

,, quential, Choice, If-Else, While:

Attributes of a process frame that determines the sequencing of activities within the frame.

* Slot:

A group of attributes, rules, and links.

* Subactivity:

The refinement of an activity by another process frame. Completion of the subactivity process implies
the completion of the parent activity.

38 S IA RS I ask IS-1 5 Software Process lo,,Is ard I ectmiqut's I ait;ior Report Version 1.)

" Tools:

External Programs invoked to perform an activity.

" Wait and Send Signal:

Synchronization primitive, which suspends activity until it receives a signal from other activities in other
roles.

" Information Frame Features:

A collection of slots with the following properties: object-valued attributes (one-way), links (Two-way),
and complex attributes (sets, arrays, text). Rules are triggered when data is modified and the action part
of rules can access frames database, and interact with the user, invoke tools, etc.

Figure 12 on page 40 is an example of a more detailed method layout for a specific software engineering
process based on the waterfall process model. This method, when enacted by the KI Shell, will coordinate
between roles. For example, in the sequential frame for the "Projects Manager" role the user cannot proceed
with the "Approve Systems Analysis" activity until the "Systems Analysis" role executes to completion.

5.3.2 KI Shell Process Modeling and Enactment Features

Features for supporting KI Shell method development (process model development):

" Includes a Method Development component, based on the KI Shell Method meta language, that pro-
vides a declarative environment to create and modify complex methods.

" Enables rapid and incremental development and modification of a method for any SE processes.

" Permits method objects to be stored in SQL. The Method Development Environment has a schema
editor that allows Method Objects to be maintained in a database. A Programming Interface (PI) to
method objects is available.

" Provides a productivity tool to generate the body of rules associated with the methods. Object-based
query functions that can be embedded in procedural components to query process and information
objects are also available.

" Includes the System Integration Library (SIL) functions, productivity tools, and object-based query func-
tions reduce the lines of code to be written by the developer of a specific SEE (Software Engineering

Environment).

Features for supporting KI Shell method enactment (process enactment):

" Permits rule invocation (triggers) to perform the "ltow" on the basis of events related to the current
activity, role instance, and information objects.

" Executes process and invokes program interfaces (PI) to tools on the basis of the rigiht data in the
context of executing activity models.

" Maintains an audit trail of the process execution in an underlying SQI databasc.

" Coordinates bct\ecn multiple roles on different workstations (one role can create processes to be cxc-
cutcd by another rolc).

" Alloxvs a user to execute dif'erent roles and instances in different windows.

" Provides a multi-window, graphical, and iconic user interface using industry-standard OSF Motif to
present executing processes iconically.

" Permits a I .;\N configuration with a process server database, \ here different role instances can be exe-
cuted on different worksrtations.

I lic Knlo\Iledgc Based Inteyration Shell 39

a La

Lii
Ed -

Q)28 I . . F f i

a E.

to U
zCC

U

iCHi cu -

m.)0 1.1

i igure 12. Method Layout for tiES's CASE Manager.

40 STARS Task IS-15 Software Process lools and 'Techniques Evaluation Report Version 1.0

KI Shell (Figure 13 on page 42) has been engineered over years as an open-architecture system written in C.
A process execution shell must orchestrate interactions between end-users, tools, and data objects according
to a specific method. To enforce such a discipline, the execution monitor must have detailed control over
the activities of the end-users as they invoke tools, perform activities, and modify data objects. The detailed
control is achieved by building the shell as an intermediary (executive) program among the user,, the tools,
and the shell's own object-based databa'e (Figure 14 on page 43). By having this control, the process
model can enforce a discipline by utilizing its represented knowledge. Finally, the process types and
instances must be persistent. By saving the process instances -- the decisions made at each activity -- an
audit trail of the enterprise work-flow process can be maintained. Such a persistent store must also provide
the usual database features - multiuser, crash recovery, etc. The KI Shell has been engineered over years to
meet these requirements.

5.4 Installation of a KI Shell Application

The KI Shell is implemented in C8 and runs under AIX, UNIX, VMS and DOS. The method descriptions
are stored in an SQL server database on the workstation. A SE Assistant of the KI Shell is a method with
tool invocation program interfaces to existing software (for example, design, analysis, etc.). In a typical cus-
tomer environment, the existing software systems may run on heterogeneous. hardware. Thus, a program
interface to each of these tools is required. To suppoAt the method in a local area network with roles exe-
cuting on different workstations, one of the workstations must have an SQL server database and the other
workstations must run the database client software.

F [arl, prototypcs include a ILISP (KRI) based systemn completed in 19J2, I A-\CS UNIX-based s'stem cornplcted in
19S4. 11 I V\l based svstcrn completed in 1986, I 1\ VNl based product \ itlh an undcrlving datlabae in 198S.
VAX VNS -h;rscd SV'4tem in 19X8, and thne current product xersion tiing C and Sol, in October 1989.

I lic Kno ledge Based Integration Shell 41

KI SHELL Monitors And Mediates
Between:

- User And Application KI Shell Monitor

- Application And Application
- User/Application Operating System

And Database
-No Performance Penalty At flan ...n

Execution Time "

1 9 '

Traditional:
" User Invokes

Each Application F Operating System

AppiM

Figure 13. KI Shell's Runtime Architecture.

42 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

METHOD REPRESENTATION

Controls interactions and uses knowledge to mediate between the project
members, the project database and the tools.

CLEANROOM Contains knowledge about:
PROCESS/ . the database objects and relationships
EXECUTE - the activity structure and support for each activity
CONTROL - the tool functions and when the functions

should be invoked
- the project members' roles

An activity can invoke KI SHELL Utilities

OBJECT-ORIENTED INTERFACE UTILITIES
DATABASE.:.., UTILITIES PROVIDING
(Activity and Data AND ACTIVITY PROGRAM

PROCESS Objects) INTERPRETER INTERFACES
EXECUTION TO .. .AR
SHELL iTOOLS

(KI SHELL SIL)

TOOLS
PROJECT MEMBERS AND EXTERNAL

DATABASES

E ""
L__9L... L-UL Tooli2

Figure 14. Knowledge-Based Shell Will Be Used to Implement a Specific KI Shell Application. Applications Include
'Software Engineering Assistants.'

The Knowledge-Based Integration Shell 43

intentionally left blank.

44 SIFA RS Vask IS- 15 Software Process I ools and I echniqucs Ilvaluation Report Version 1 .0

6.0 STARS IS-15 Software Process Case Study Preparation

6.1 Preparation and Scoping of "Cleanroom Software Process Case
Study"

This section briefly describes the activity and records the lessons learned during the creation of "'The
Cleanroom Software Process Case Study" deliverable.

6.1.1 Brief Description

This task was completed in two steps. The first step was to understand the goals and strategy for the case
study. Upon its completion, the second step was to prepare the case study problem document.

Initially, a number of group discussions were held by the specification team to clearly understand the
purpose of a "Cleanroom Engineering Process Assistant (CEPA)" and the purpose of the case study. The
more general questions of what is a process, what is process modeling, what is the purpose of a process
assistant, and how do humans interact with a process were discussed. In understanding the general concepts,
specific insights were gained. These discussions helped determine the size and scope of the case study and
the strategy for the demonstration. After each discussion, the present state of understanding was noted,
along with open questions and action items. This allowed the body of knowledge and understanding to
increase, while the specification team became more focused on the end result of the discussions, which would
be the writing of the case study. Additional discussions helped focus the case study-specific concepts more
closely. The size and scope of the case study was determined. -he parts of the Cleanroom process that
were to be used for the case study needed to be carefully listed and described. Additionally, the scope of the
case study, a description of what the Cleanroom process was going to be applied to, was also determined.
This was the "Host-at-Sea Buoy" problem < 23 >. Both the size and scope needed to be well thought out,
since time allotted to perform the case study was limited to three staff months.

The deliverable was written by first determining the goals of the case study, and then supporting the goals
with additional information necessary to make the case study description complete. A sequence of versions
was created, each of which was reviewed, with the comments being used to improve the next version of the

,cument. After a number ot ruvi-ions, !he document wvas rewritten to improve clarity and to improve
organization. The document first presented an overview, which described the purpose, approach, assump-
tions, and relevance of the case study. Subsequent sections described the case study in a more detailed
manner (including discussions of the Cleanroom process, CEPA, and the "[lost-At-Sea Buoy" problem), the
test bed and scenario descriptions, a proposed demonstration scenario, and evaluation questions (for both
the Cleanroom process and CEPA). Additionally, the "lHost-At-Sea Buoy" specifications were included, as
was a discussion of the relevance of the case study to process modeling work previously done by Kellner and
Rombach for the 6th International Software Process Workshop < 14 >.

6.1.2 Lessons Learned

The specification team could only select a portion of the Cleanroom process model, given the project's time
constraints. To capture the entire Cleanroom process would have been a sigzificantly larger task.

ltnsuring that the portion of Cleanroom selected for CI'PA contained all of the criteria that Kcllncr and
Rombach described in their paper "Comparisons of Software Process I)cscriptions" was a useful exercise. The
criteria identified helped the specification team make the portion of the Cleanroom model selected and the
buoy problem more complete. The KellnerRombach criteria gave the specification team a checklist of
issues to consider when developing the case study.

SI.A RS IS- I 5 Soflware Process (a-.e Study Preparation 45

Although it was attempted for the "Cleanroom Software Process Case Study" problem document, a script for
a test or demonstration scenario is difficult to create until the prototype is complete. Although specifications
can be prepared for a prototype concept, there are no guarantees that the specification for the prototype
system will be completely and correctly implemented. Additionally, it is necessary to work with the final
prototype product to better understand how to demonstrate the concepts built into the prototype system.

Writing an implementation-free specification of the buoy problem was a straightforward exercise using Mill's
Box Structure notation < 24 >. Further, the Construction Plan was also relatively easy to prepare using
"Box Structure" notation. This was somewhat surprising since the "Host-at-Sea Buoy" problem is not a
trivial application.

6.2 Preparation of Specification for the CEPA Demonstration

This section briefly describes the activity and records the lessons learned during the creation of the "The
Cleanroom Engineering Process Assistant (CEPA) - Specifications for a Prototype of the Workstation Compo-
nent and Dispatcher."

6.2.1 Brief Description

The primary goal of the specification process was to create a specification for the implementation team to
use, to develop a prototype Cleanroom Engineering Process Assistant capable of supporting the enactment of
the Cleanroom Engineering Software Development Process. Since this is a case study, an objective was to
observe the specification creation process to gain experience for an eventual production version of the CEPA
system.

The perspective from which the specification and validation team tried to view CEPA was that of a process
engineer who is trying to develop an automated support application for a project's process. From that per-
spective, the specification and validation team needed to understand the underlying process and to identify
the parts of the process in need of implementation. The specification was created by first spending a signif-
icant portion of time to understand the problem and solution domain. Specifically, the specification and
validation team's focus was on understanding desired capabilities for CEPA in specific and for a process
assistant in general. The specification and validation team tried to understand what an ideal CEPA would be
like. The team took advantage of experiences individuals have had creating and using other systems, both
inside and outside the CASE domain. Looking at a potential system from an abstract perspective allowed
the specification and validation team to understand the problem as completely as possible before embarking
upon a specification of the solution. Of course, some "problem domain" analysis occurred while the specifi-
cation was being developed. The specification was then created, with the intent of clearly specifying all
functionality that was necessary, without imposing a specific solution since that was the responsibility of the
implementation team. Five versions of the specification were written. Most of the specification remained
relatively constant after May 13, which was the second version. A portion of the time writing the specifica-
tions consisted of discussions with the implementation team, to explain the specifications and to assist the
implementation team in developing the prototype. This was done since the specification and validation team
authored the specifications and was the resident expert on the Cleanroom process. In terms of an effort
distribution for the specification, approximately 45% of the specification and validation team's time was
spent understanding the problem and solution domain, 45% was expended in writing the specification, and
10% was shared in working with the implementation team.

The final version of the ('!PA specification describcs the set of operations that (IA);\ can perform (from a
user's perspective), that will support the software development project members in conducting a (leanroom
project. A number of different roles that staff members can perform are described. as is a ignnificant amount
of functionality necessary for the ('leanroom process. The specification did not precnt a complete
description of the ('leanroom process, nor did it describe all of the activities for all stalff m'mbers related to a
project. The specifications were purposely limited b\ the size of the case stud\. lrinari1\ the

46 SIARS Ia-k IS 1 Solotwarc Proccss I o1Wi arUd Ic' hniqucs I alrualion Report \er.iom I.0

development/certification cycle of the Cleanroom process was specified, since the purpose of CEPA was to
support the case study.

6.2.2 Lessons Learned

Working on the User's Manual portion of the specification was important, since the possible stimuli for each
user were clearly defined in that section. Additionally, the User's Manual is the primary section where a
developer can get an idea of the intended 'look and feel' of the software, although the User's Manual should
not dictate a specific implementation.

The use of the notation for black boxes, as defined by the Box Structures notation < 24 >, for the specifica-
tion and design of systems allowed for an implementation-free description of CEPA, where only the
responses in terms of stimuli histories were presented.

Writing a box structure Black-Box Specification seemed to be extremely efficient. The specification and vali-
dation team is not sure that a similarly good specification could have been written, given the same time
constraints.

Transaction descriptions were used to show sets of related stimuli, to give an implementer a better idea of
the CEPA transaction usage, e.g., a sequence of stimuli. The transaction descriptions also helped the
specifier to ensure that all stimuli were used, as well as used correctly.

Use of abstractions helped make the description of the box structure black-box subfunctions more compact.

Relatively complex systems can be described quite compactly when a box structure black box description is
used. Less than 100 stimuli were required to describe CEPA.

Looking at CEPA from multiple user's perspectives (the different human users, as well as the dispatcher and
storage mechanisms) helped make the system easier to understand and specify.

Both CEPA and the tools that run under CEPA are important. Using one without the other does not yield
benefits since one needs the control flow to determine which work to do, as well as the actual tools with
which to do work.

The planning and scheduling tasks would have been difficult to implement. Because an ideal planning and
scheduling tool would probably be embedded (like Oracle) since some tools as well as KI Shell would need
to interact with it. Otherwise, information from the planning and scheduling tool would need to be con-
stantly converted into a form that would be usable by KI Shell and other tools. This makes the API
between KI Shell and the planning and scheduling tool more complicated. It also leads to the need for a
new and complicated API every time a different planning and scheduling tool is selected.

A clear and precise Construction Plan for CEPA may have also helped direct the implementation team and
would have given the specification and validation team a clearer set of assessment criteria since specific func-
tions would have needed to be submitted at certain dates.

Uniquely describing stimuli and responses, by including the names of the devices between which the stimuli
or responses move, made the categorization of stimuli and responses much more organized.

U sing an appropriate file-naming convention can ease the task of storing state data. because related sets of
files can be found by only knowing a partial name (suffix or prefix) relating a set of state data files.

Many box structure black-box subfunctions were similar, in that the conditions for responses were similar.
although the responses (to the screen or to other devices as abstractions) wyere unique to each stimulus.

S ILARS IS-I5 Sott,.are Proccss Case Study Preparation 47

NOTE:

One disclaimer must be made about the specifications for the "Cleanroom Engineering Process Assistant
(CEPA)." The CEPA specifications document < 37 on page 156 > is not a complete specification of the
Cleanroom process. Cleanroom specifications have six volumes: (1) a Mission Statement, (2) a User's
Manual, (3) a Black-Box Specification, (4) a Black-Box Specification Verification Statement, (5) a Usage
Profile, and (6) a Construction Plan. The CEPA specifications contain partial versions of the first, second,
and third volumes. Time constraints prevented these three volumes from being completed and prevented the
other three volumes from being started. Therefore, the CEPA specifications should not be considered an
example of a full Cleanroom specification. The three volumes should be viewed as prototype instances of
those three volumes of a Cleanroom specification. Even from the portion of the Cleanroom process selected
for defining the CEPA prototype, the benefits of Cleanroom specifications are apparent.

6.3 Validation of the "Cleanroom Engineering Process Assistant"

Implementation

This section briefly describes the activity and records lessons learned during the validation of CEPA.

6.3.1 Brief Description

It must first be noted that the creation of the CEPA prototype entailed a four-step process: (1) determining
objectives, (2) evaluating alternatives, (3) developing/verifying, (4) and planning for subsequent steps. The
four steps were iterated a number of times. These iterations are consistent with the Spiral Model of software
development conceived by Boehm < 5 >. The Spiral Model allowed the IBM team to increase its under-
standing of the problem at hand by following the same set of steps, while armed with more knowledge at
each iteration.

The validation task is really twofold: validation of the preliminary versions of CEPA and validation of the
final version of CEPA. The hope was that a concerted effort in noting and resolving problems in prelimi-
nary versions of CEPA would minimize the need for changes to the final version of CEPA.

"[he first task has been completed. A number of review meetings have been held between the specification
and validation team and the implementation team, where the concepts of and specifications for CEPA have
been discussed. Implementation options have also been discussed quite a bit to ensure that a consistent view
of the implementation exists between the implementation team and the specification and validation team. In
addition, these meetings afforded opportunities to assess the various versions of the CEPA prototype.
CEPA was reviewed and validated against the specifications, with divergences being noted. User interface
flaws and other shortcomings in CEPA were also noted. A major significant flaw in the CEPA implementa-
tion, which would have given CEPA a less than desirable 'look and feel," was also resolved in one of the
meetings. A llypertext-like look and feel" was preferred, given the capabilities of KI Shell. In this case the
implementation team was able to take advantage of a feature of KI Shell in a way which had not been con-
sidered before. According to an implementation team staff member, this previously unrealized use of KI
Shell was desirable and would change the way future implementations would be done using KI Shell.

"[he second task of validating the final CEPA was pcforrncd by employing coverage testing against the
CEPA specification. The only true departure from the CiPA specification and the CEPA implementation
was the implementation of state data management. The specification called for (TIPA to automatically
return all state data that had been checked out, back into the state data repository'. It was not possible to
develop this capability in the S"' increment. The problem of state data management can best be sohed by
the selection and intcgTation of tools into the Cl PA s\stem to provide configuration and library managc-

eilent support.

48 S I\ RS Iak IS 15 Softiarc Procc.s, I oolk and I echiqucs I tlu.,iion Report \crsioti 1i

6.3.2 Lessons Learned

Box structures makes it possible to perform verification at an early stage, since the assessment criteria were
clearly defined.

It is better to find and fix problems as early as possible, since these corrections are less expensive than cor-
rections made as a product nears completion. For that reason, a sequence of versions for the prototype was
helpful.

User interface "look and feel" issues require solution domain evaluation and some experimentation with the
prototype. It is difficult to predetermine what the system is supposed to look like before knowing the limita-
tions of the implementation. Additionally, the precise user interface 'look and feel" may be modified as
validation of the final product occurs.

Due to the use of box structures, which was a clear description of the desired functionality, no major func-
tional problems were found, only 'look and feel' related issues."

6.4 Major Lessons Learned from Case Study Preparation

This section contains major lessons learned by the specification and validation team during the IS- 15 task.

Automating the Cleanroom process with CEPA focused quite a bit on the automation of the engineering
tasks -- the basis for automation of the process.

The user interface is critical to make a software system usable, since the look and feel" are features to which
human users of CEPA react. Even after specifications are given, seeing what the software looks like is
important, since that is a determining factor in making the software usable.

Specifications should be closely followed. It is often tempting not to follow them, since that avoids the need
to understand another person's document. On the other hand, not following the specifications leads to
development of software that may not be at all what is desired.

The need to have a CEPA that is as unintrusive as possible to the user is of utmost importance. A user-
friendly CEPA will have been built when engineers using CEPA only see themselves following the
Cleanroom process and do not realize they are also using CEPA. In other words, the process is visible to
the users of the process, not the tools supporting the enactment of the process are invisible.

The importance of having an automated assistant to help in the adoption of a process was never so clearly
recognized as it was when the specification and validation team participated in creation of the CEPA proto-
type. Individuals using traditional heuristic methods of software development will probably more readily
move to a process with automated support than they would to a process without automated support.
I laving automated support for a new technology gves the new user a sense of security, in that there is some-
thing helping the user learn and take advantage of the process.

tlaving the box structure Black-Box Specification was very useful in determining when the implementation
team diverged from the specification. Since the specification lid not imply desism. the specification and vali-
dation team and the implementation team did iot wNastc time debating what dcsien the spccification w a
implying. Rather, time was spent \orking with the implementation team coming up with the best po,,iblc
solution, Wven the time allocated for the case studv.

[he most important lesson learned was that it is both possible and extremely productive to use the formal
desin Tnethodolov inherent in Box Stnicture inclhodology' Mhen developing prototpcs. The volume of
documentation produced and the quality of it (in terms of correctness and conistency) \ould havc been

S LARS IS- t5 Sofli are Process Ca'e Study Preparation 49

difficult to produce by using any approach. Although such a design approach is formal, specifications
produced using box structure black box notation were easily developed and quickly produced -- two traits
that are often not associated with formal design approaches.

6.5 Use of Cleanroom Specification Techniques to Model Processes

For STARS Task IS- 15, the Cleanroom process needed a suitable process modeling notation to allow the
automation of portions of the Cleanroom process in CEPA. For IS-15, Cleanroom specifications, which are
based on the concepts of Box Structures, were chosen to model the Cleanroom process. The use of
Cleanroom specifications was beneficial and will be described in greater detail over the next few pages.

A specifications document for a process model must describe the process in sufficient detail and precision to
allow the process engineer to implement the specification. A Black-Box Specification for IS- 15 was created
using Box Structures. In using a black-box description, all responses are described solely and completely as a
function of stimulus histories. In this way all actiors are clearly described without making implementation
decisions, because all actions are described solely in terms of input and output. A sample black-box sub-
function from CEPA specifications appears in Figure 15 on page 51. Additionally, since each stimulus has
a different stimulus subfunction, the actions for every input are clearly described. Stimulus subfunctions are
a good level of granularity for the process engineer, since the complete set of responses with full control logic
for every input is given. The result is a description of what each part of the system does, accumulating into
precisely what the entire system does. An additional perspective to describe the system was also needed,
because users actually use the system by entering multiple stimuli and may think in terms of sets of inputs or
transactions. Additionally, the relation between stimuli, such as where they are on and how they are
accessed, is also important to see. In effect, not having the second perspective can lead to a classical case of
"not seeing the forest for the trees." Cleanroom specifications account for the second perspective on the
system with the User's Manual

50 S I "\RS I atk IS 15 SofI;:tre Process I oo1N 1rd I cLI1iqirc! I \aluAtion Report \'rsiori 1.0

4AIME OF BLACK
Ox SUBFUCI-tOt

black box subfuncton S4: Modify Engineer's Notebook is
[The enginecrs notebook is a diary in which the engineer may write whatever he/she would Jike]

B4.01 Read WS3:Get Enginees Notebook(user, WS directo.,EL " I~F
B4.02 Activat WTl:Engineer' Notebook Tool user, WS directory/Engineer's Notebo)- -

[At this I. control is curreny with h L Control will return to the subfun r,
tool is exi A hot key will get a remove ser from this posi on, and will re amser to this
position whc imulus is reselected, or one -keys back.]

B4.03 Deactivate W ngineers Notebook T
B4.04 Write WS4:Put E wes Notebook(user, tory/Enginee Notebok);
B4.05 Restore;

IggVE~ 9 C-VIt

SEQUENTIAL .SOO
NUMBERS OF

SUBFUNCTION. EACH s \O1A
SUBFUNCTION HAS A P'SS, - St =

UNIQUE PREFIX.

CO~ '~f

Figure 15. A Black Box Subfunction from the CEPA Specification.

The User's Manual describes the software system from the user's perspective. Each input coffesponds to the
selection of an option on the screen, such as a mouse click. The inputs available fc. eac user are available
in a textual or graphical form. In that manner a potential user can see, before implementation, what the

look and feel' of the system will be like. The user interface is somewhat dependent on the implementation.
For example, certain languages or features, such as X-Windows, allow the user interface to function in par-
ticular ways that may need to be considered when designing a product. Additionally, these featui.s, such as

OSF/Motif, require the use of additional stimuli, which are not fully described since they really do not affect
CEPA. All inputs and their availability/location in the system are described in the User's Manual. The

other feature of the 'User's Manual is a description of transactions, which are sequences of stimuli that lead
to the completion of larger units of work. Transactions were shown graphically in the CEPA specifications
to describe the sequence of stimuli that lead to the assignment, creation, and completion of a black box, for

example. The transactions help users see how sessions or "day in the life" scenarios would work. These
more closely describe the way they will use tlie system. Figure 16 on page 53 and Figure 17 on page 54
illustrate the inputs available for a developer and the transactions necessary to create a black box, respec-
tively.

The Black-Box Specification and the User's Manual give two complementary views of :he CEPA system.
The Black-Box Specification 'ves a precise description of the system in terms of stimuli histories and

responses. The specification completely describes what the system does. This level of detail is necessary for

the process engineer who will be implementing the process. The User's Manual complements the Black-Bor
pecification by describing the system from the user's perspective. This document describes the system in

STARS IS- IS Software Process Case Study Preparation 51

terms of how it looks and how it will be used. By reading both the Black-Box Specification and the User's
Manual, a user clearly understands the functiona.?y and the 'look and feel" of the software system to be
implemented.

Box structures were also used to described the Cleanroom process for STARS task IR-70iE, creation of "The
Cleanroom Engineering Software Development Process (SDP)" < 36 >. In that document the Cleanroom
process was divided into a set of 25 processes. In preparing the Cleanroom Engineering- SDP, black, state
and clear boxes were used. The state and clear boxes served to describe what information was stored, and
how it was stored. The clear box also helped to clearly describe the process, in terms of engineering tasks
and conditions. Engineering tasks are the actual steps that engineers, or teams of engineers, follow to do
work. Conditions serve to show the control flow (in terms of entry and exit conditions) between different
engineering tasks and between processes and between engineering tasks and processes. The conditions
included completion conditions, which are detailed checklists of actions that must be completed before the
process itself is considered complete. Figure 18 on page 55 and Figure 19 on page 56 display a sample
Cleanroom process from The Cleanroom Engineering Software Development Process."

S2 . ItS I ;l-k IS 1 5 SoItxfarc Irocess] ook aijd I ctklrliqies I I tifliot R.'rt \r~ioll I.

0I ag _c I -------

ZZ
0a0

uJ U,
-Ja o , o 4) I

- , J, . .%,04) SWI~l

-I a -. o- <,.o I :
zl ,,,' ') I k ,

-' " ,o' - " : "

F4 Cn.~

o

. < o z

0 0

,- F-- < W o

.1 lu 0~ . 06 60- e

0- 7-3:)
U3

z 0

o oo 0000oz. ,

Figure 1. Developer Screen FormaZ

STARS IS-15 Software Process Case Study Preparation 53

C))
u0

4.O'7

cc

0 q

0 04
U U

U y

,.-,-o
4 cE

0 04
(i 75k

E0 0
a ->

.00

too.

1 igure 17. ULsing CU P.A Iacilities to Perform a Black-Blox I ask.

54 SFA RS T1ask I SI -5 Software process Tools and Itechniques 1: al uation Report Version 1.0

Process E19 - Develop Certification Plan and Tests For Increments l..i

Process Summary The Develop Certification Tests For Increments i..i process completes the
preparation for the certification of the software product. A usage-based testing approach is developed,
which will allow for usage testing to be conducted on the software. The process is illustrated in the
figure below, and is also described in greater detail below.

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I t
I I

4
E19: Develop Certification P an
and Tests For Increments 1..i

1 No
O Ng,' Cm Engineering Tas '

13: E4k'mplete- for Process E19 ompleti es
Condition 112: E19 Complete

P essCompleted By Certification team. - C ,

Pr ious Processes Increment Development 3

Pre ondition None -g - i -

Sub quent Process Increment Certification (E17)

Stimuli E4 Complete (13)

Responses E 19 Complete (112)

State Data Usage This process involves the creation of certification testeor"O ,-ware product,
which is the primary content of the Software Certification Files. That matelO lt ted and modified
by this process. The Project Document Files, Software Specification Files and , k'eManagement
Files are primarily used as reference sources. The project schedule in the ProjecrManagement Files is
used to determine effort and resource allocations for this process.

Figure 18. Sample Process from Cleanrom hngincering Software l)evelopment Process (I of 2).

STARS IS-I5 Software Process Case Study Preparation 55

Process Description The Software Specification Files contain the Usage Profile Volume, which
presents, in the form of a matrix, the transition probabilities which define the probability of a user
moving from any one program state to another program state. This matrix was developed by applying
a Markov model to all the identified program states that the software can reach. Additionally, the
Usage Profile Volume contains the stimuli to the system and the corresponding distributions for each
stimulus in each state. Using the matrix and the stimuli information, the Certification team develops
test cases by completing the following sequence of engineering tasks until the completion conditins
are achieved: dI

1. Modfy the usage profile according to the Construction Plan. 'I Ne
2. Determine the requirements coverage of each state and each state transition.
3. Determine how many test scenarios are required to test the increment to the dpired level of

reliability, given the expected rate of failures.
4. Specify the sampling scheme to be used to guide the testing for the increment. This includes the

decision of whether both control flow and data will be randomized or just control flow.
5. Develop test scripts, or test script generators that list the stimuli and stimuli values which complete

the program state transitions.
6. Develop test scenarios by creating random state transitions. Use the test scripts or script generators

to generate each program state transition. This task may include the random generation of data.
7. Based on the test scenarios generated in task 6, compute expected outputs for each test case. The

expected results form the basis of comparison for validation of test executions. o 9
8. Set reliability targets and failure limits for the increment. ,, tk"

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in r to
complete this process: 1 p v

1. Do test scenarios reflect the operational profile of the software to be t.I- O
2. Can the results of executing all test scenarios be validated? e,,S !, .I- d
3. Have test passage criteria for the increment (such as number of test sce , aldures or reliability

goals) been determined and corresponding test information generated?
4. Have expected results been generated, and passage criteria determined for each test case?
5. Have sufficient test scenarios been generated to certify the increment to the desired level of

reliability, given the expected rate of failure?
6. Is the increment complete according to the items listed in the Construction Plan (Volume 6 of the

Specifications)?
7. Has all state data in t . Software Certification Files been correctly added, changed or deleted?
8. Have all pertinent reviews for this process been completed?
9. Have all action items generated during reviews that pertain to this process been completed?

10. Have all information to be preserved been placed in the correct state data?

Keyword References
Test Script, Test Script Generator, Test Scenario

- Section 10
- "Engineering Software Under Statistical Quality Control," IEEE Software, November 1990 (Cobb,
Mills)
- "Statistical Quality Control of Software System Development," SET Course

Figuire 119. Sample Process from Cleanroorn lngineering Software I)evelopment Process (2 of 2).

56 S .\RS lask IS-15 Software Process lools and I echniques !!valuation Report Version 1.0

The previous discussion has given the general benefits of using Cleanroom specifications. The specific ques-
tion to be discussed was: "what are the benefits of using Cleanroom specifications to model processes?" [or
the CEPA prototype, the IR-70iE report, which described the Cleanroom process, was used as a basis for
the Black-Box Specification and User's Manual for CEPA. These two documents define the part of the
Cleanroom process that will be implemented/controlled by the CEPA software for the Cleanroom Software
Process Case Study. For this reason, the chain of argument will justify first the use of box structures for the
Cleanroom process, then the use of Cleanroom specifications to describe the software for process modeling.

The box structures description in IR-70/E presents all of the information necessary to describe a process in a
convenient manner. Relationships between the processes were clearly described. Inputs to and outputs from
each process are listed, in terms of stimuli and responses. Entry and exit conditions for a process are listed.
In this case the entry conditions were completion of previous processes or preconditions' being true or false.
Exit conditions are the lists of Completion Conditions for each process, which also serve to validate that
engineering tasks were all properly completed. Project data (state data) that is used by a process is also
clearly listed. This serves to relate project activities to the creation, acquisition, or use of information during
the project. The list and organization of engineering tasks is also given. The engineering tasks are the actual
units of work for engineers to complete with the Cleanroom process. Additional information that is kept in
the clear boxes for the Cleanroom process includes a process summary, a list of people who are to complete
the task, measurement data, and references to keywords.

In analyzing the processes found in the IR-70/E document, one sees that the necessary information to
describe the process is available. Most of this comes as a result of creating the black- and state-box views of
each process before making the final clear-box description. In that manner, the function of each process was
understood, as well as the information created or stored during that process. Some minor details are also
added in the clear box, to complete the description of the process. The hierarchy of the boxes was also
determined using the Box Structures algorithm, which created lower level processes as they were needed,
rather than creating them randomly and trying to find a heuristic way of connecting them.

Using two volumes of the Cleanroom specifications to specify CEPA was eased by the fact that the
description of the Cleanroom process had been done using box structures. The specification could proceed
from a fairly rigorous problem description. The details of the clear boxes also served as the basis for the
black-box subfunctions because where the engineering tasks left off in IR-70/E is where the specifications for
CEPA began. In effect, the Black-Box Specification volume drove a portion of the IR-70/E document to a
deeper level.

A portion of the Cleanroom process was selected for the IS- 15 task case study. The software parts of the
process were then specified in the CEPA specifications. The specifications were written quickly and were
easy to modify, which is impressive given the amount of detail found in the document. This was a result of
the use of box structures for both the IR-70!E document and the CEPA specifications. The two perspec-
tives on the system could be used in combination to understand the functionality of CEPA as well as the
'look and feel" of the system, without assuming and accepting numerous implementation decisions. That is
an extremely valuable benefit.

As a result of the STARS IR-70, E and IS-15 efforts, the benefits of using box structures and Cleanroom
specifications to model processes as well as to specify software have been realized. In terms of completeness
and clarity, box structures are extremely useful. Additionally, the savings in terms of cost and time of using
this form of specifications are also significant.

One measure of the effectiveness of a specifications document is the resulting implementation. I lS, using
the specifications, was able to create a fairly large and detailed the (IVPA softwarc system wNithin the con-
straints of the IS- 15 schedule. 'lhis was attributable to having a Clcanrooin specification that clearly
described the system to be implemented and the power of K I Shell to quickly implement the specification.
[he result is a the CI P.\ s\,,tcm. consistent with the specification, that was developed within the IS- 15
schedule.

SI A RS IS 1 5 S t)-, r mcSs (a',e Study Preparation 57

Intentionally left blank.

-58 S I .A\RS I a, k IS-I 5 Softwarc iroccss I ook atid I c tisqIcs I xauaition Report Version I.(I

7.0 Software Process Enactment Experiment and
Demonstration Preparation

This section provides an overview of the "Cleanroom Engineering Process Assistant" (CEPA) concept devel-
oped as part of the "Cleanroom Software Process Case Study" and describes the implementation of the
CEPA prototype system, which permitted us to examine the process of developing a system to support the
enactment of a defined process. Finally, this section will provide instructions for installing the CFEPA system
and a scenario for demonstrating the CEPA prototype system.

7.1 CEPA Demonstration System Description

One of the goals of the STARS program is to instantiate a Software Engineering Environment (SEE) with
program development and support tools, to facilitate DoD software development. CEPA is an integral com-
ponent of a SEE. To establish the relationship between CEPA and a SEE, we will review the basic elements
of a software project and role of a SEE in performing a software project.

7.1.1 Software Engineering Environments

Software development is organized around projects. A project is authorized to develop an item of software
to accomplish some mission that has been assigned to the software. A software project is an organized
undertaking to develop an item of software and all its associated deliverables. Software projects are com-
pleted by people (software engineers) who have been assigned to the project. The staff are provided with
resources to assist them in completing the project. These resources include:

" The software development processes that are to be used to complete the project. The assigned processes
define the techniques, practices, tools, methods, and data required to perform the process.

" Training materials and other reference materials for the assigned processes, tech:niques, practices, and
tools.

" Workstations (including the associated system software and associated interworkstation communication
facilities) on which the project engineers individually and collectively perform their work on the project.

" Software to operate on the workstations that helps the project engineers utilize the software development
processes that have been assigned to the project.

The resources included in the above list are integral parts of a process-managed Software Engineering Envi-
ronment (SIT) and form the basic requirements for an environment to support software engneening.

Each project must have an instance of each of these resources. The instances may vary only modestly from
project to project or they may vary a good deal. The beginning point for establishing a SEE for a project is
the definition of the process and its associated tools and procedures. Once the project process is defined, the
other parts of the project SEE can be assembled. Therefore, there must be two parts in the software that
supports a SIE. 'he first part is the portion of the software that the process engineer uses to define the
proccss and then to assemble the project-specific SE-. The second part or the ,ll software is the software
used by project participants (managers and engineers) as the\ pcrtwOin the project. "1 hc deionstration
s\ stern only provides capabilities of the second I\pc of acti.it\. hut the work in specifving the t are has
pointed to a \way to develop software to support the first type of activit\.

Softrare Process I lna..inicit l xpcririit'rit and l)eon tration Preparation 59

7.1.2 CEPA and Software Engineering Environments

The SEE concept is that when a project is initiated, a process engineer(s) defines the process that the project
is to utilize. The defined process and its use of associated practices, tools, and project data are recorded in
the software operating on the workstations. In this way the project engineers and managers can easily use
the defined process and as a result concentrate on intellectual tasks of designing the software.

The view point taken by CEPA is that the processes to be utilized by a project are defined by the
Cleanroom principles < 1, 3, 7, 11, 12, 18, 19, 20 >. The specific process to be used by a project can be
documented by process engineers using black-box functions to define the responses that engineers and/or
teams of engineers should produce at each state of the process. When using black-box functions, the func-
tion responses are defined in terms of stimuli that the process has already defined. In the CEPA view the
results of previous project design decisions reside in the project state data.

Before defining CEPA, the Cleanroom process was defined at the highest level in the IR-70 Extended project
< 37 >. Then to develop CEPA, the Cleanroom process was defined in greater precision by including com-
plete details for how to design and certify software using the Cleanroom process. This definition was docu-
mented in terms of black boxes in the CEPA specification < 36 >.

To put the CEPA work into perspective, the following repeats the SEE resources as defined in the previous
section and points out how the CEPA work relates to each of the resources:

1. The software development processes that are to be used to complete the project. The assigned processes
define the techniques, practices, tools, methods, and the data required to perform the process.

In developing the CEPA specification, black-box functions were used to document the detailed process
to be followed. In developing the specifications, the viewpoint taken was that of a process engineer
documenting the process for others to follow. Since this project was only to define and develop a proto-
type system, only a portion of the Cleanroom process is defined in the CEPA prototype specification.
CEPA experience indicates that black-box functions are ideally suited for defining and documenting
processes.

This experience points in a promising direction for developing a production version of CEPA for the
project initialization portion of a SEE. A process engineer will define the project process in terms of
black-box functions that the software can read and understand. Presumably this will not be a difficult
task, since generally a process enginecr will be fine tuning previously defined processes. As a result, there
will be high levels of reuse of process definitions. The software then uses these process specifications to
tailor itself to perform the process as defined. It seems feasible to develop software that performs in this
way.

2. Training materials and other reference materials for the assigned processes, technitucs, practices, and
tools.

The CIYPA prototype provides on-line access to the Cleanroom Engincering Softvare Development
Process (SDP) handbook. Since the software engincers will be using box functions to define specifica-
tions and software, they will be able to easily understand the process definition as written inI terms of
black boxes. This precise, easy to understand process definition facilitates the transfer ot process know-
ledge.

3. Workstations (including the associated system software and associated intermorkstation comm||nunication
facilities) on iihich the project enginecrs individually and collecti c cl perform Iheir i ork on the project.

[he (t -lPA specification assumes the existcnce of workstations connected over an casy to use network.
Anothcr assumption is that the workstations have screens of sulicicnt size to reasonably hold imacs of
many related documents. Additionally, it is assuIed that the worktaltion ".% Acste sott arc is capable (It'
executing' multiple applications and that it facilitates people uising Muhipic applications such as "clit ald

60 SI \RS Li k IS I i StoI \arc I'r,,cs I oo,, and I ecirliques I vaiuittiri Report \vrion 1I

paste" and 'live copy and paste'." The workstations are connected to a project state data server, where
all state data is maintained in a controlled environment.

4. Software to operate on the workstations that help the project engineers utilize the software development
processes that have been assigned to the project.

The software needs to provide three main functions. First, the software must coordinate all interper-
sonal work and individual work to guide the engineer though the process providing automatic access to
all the correct tools and data. CEPA is intended to this coordinating software. Second, the software
must provide the tools that the engineers need to use in designing the software, which is the object of the
project. The CEPA specification defines some 30 tools that software engineers need to access. Third,
the software must perform all project management planning and control activities.

The prototype CEPA provides (1) access to the some 30 prototype tools that developers and certifiers
require, (2) facilities for engineers to communicate with each other and work together in teams, (3) facili-
ties for engineers and managers to communicate about task assignments and project status, (4) an accu-
rate status report of the project by recording the status of completion conditions, so that only tasks for
which all prerequisite tasks are fully complete are dispatched, and (5) access by managers and team
leaders to project management and scheduling tools.

7.1.3 CEPA: An Overview

The mission of the Cleanroom Engineering Process Assistant is to enable software development organizations
using the Cleanroom process to produce high-quality products while increasing productivity.

This mission is accomplished by providing on-line assistance to all members of the software engineering
team utilizing the Cleanroom process. The Cleanroom Process (CP) has been shown to facilitate the devel-
opment of essentially defect-free programs and to increase the development team's productivity. CEPA will
have the following missions in aiding members of the development team to use CP:

1. Minimize realization productivity losses, that is, reduce the time lost because supporting activities are not
properly coordinated. CEPA will significantly improve the probability that all of the prerequisites, tools,
and data that an engineer needs to do a task are available with no wasted time on his or her part.

2. Make it easy for the engineer to follow the Cleanroom process and thereby obtain all of its benefits.

3. Enforce the Cleanroom process in the most unobtrusive way possible by being user-friendly.

4. Make it easy for all levels of management to plan, schedule, and control all project tasks and to ensure
that the required reviews and verifications take place.

5. Make it easy to collect all required metrics for statistical control of the development process and better
estimates of development time and cost.

6. Update on-line state data, the data needed to develop the product, and make them immediately available
to all members of the development group.

7. Providc direct, on-line access to standards, tutorials, and other aids.

8. Improve formal and informal communication between the members of the group.

lhc net result of an organization's equipping its emnineers with (PA.\ is having in place a repeatable,
defined. mnanaged, and optimi-ed software development process according to the S!!I Maturity (apability
Ratings I.: 13 >. By using the ('leanroom Process, supported by (1 Il-\, organizations can expect to develop
csscntially failure-free software with much less Lost than is currently required to produce failure-rich softw\are.

'1 i e cpy aJd paste refers to ite ability to cut tahles,. text or fi'ilre, lotIi diflreint o> kCi'eS, ild hiase them aut
m111icIhl>I updated, when thu source files are modified.

Softwarc Pr-ts I -icun e t I pernw i tl , mid I)erm4no.stralion IPreparatIi on 0 1

7.1.4 Using The CEPA System

Upon logging into CEPA, one is presented with a screen corresponding to his or her role on the project. A
role corresponds to the responsibilities an individual can have on a project. For example, one can be a
development team leader or a certification team member. The next few pages, will describe "a day in the
life" of a development team leader. The screen that a development team leader is presented with, upon
loggng in, is shown in Figure 20 on page 63.

62 S I . RS I ok IS I i S,,It \.re I'ro --' ok I 1 I d I vcluiqucs I ;Iialion Report \'erioz 1, I

0 r,

CL z

20 0
IDU_ 0gU

*l -- - -- 0

- - 5 EQ 0 00

~E Oi 0

V). U) A o 0 0 0

cc t-w jM C &
I. *u cc o'1 .t

0 Ca --
WW D 50 .0, MV

0 n w > J0.

LU 0 L*. 4 1
IL V CL

0~ C

U. U.z I. LL L LL CLI.

LU *j *i *U 0I O3 w

F: 2 Cn W --l

to M oo2 0
2 MU -J----- -- -- - -- - - - r - --- I -- - - -- -

w1 0 00 0 0 0 Z 2 0

aw IW z w Ow ~ 0
W I. 0 wo.

-J I.- 0 i , z)d

Figure~ ~ 00 Deeomn Tea lede Scen.om

o war Prcs Encmn Exeien n emntaio rprain 6

What first must be understood is that a development team leader is also a developer. This is logical, because
there is no need for a full-time "manager" for the development team, and thus, the team leader will also
participate in the actual development work.

As a team leader, the development team leader can assign tasks. This is done in two ways. By selecting the
"Assign Tasks" option on the bottom of the screen, new tasks, such as creating the black, state, and clear
boxes for a module (a module is the black, state, and clear box along with all clear box-refinements for a
code component) can be assigned. Tasks can be preassigned in that they are assigned to be completed, but
are not available to be selected by a developer until specilic preconditions are achieved (such as the com-
pletion of a previous box). It is also possible that the team leader will only assign some tasks, for example,
only assigning the black box. The other assignments (or a change in a task assignment) for the module can
be selected by again selecting "Assign Tasks" but this time selecting a specific task, all of which are visible to
the right of the "Assign Tasks" option. If a specific task has not been assigned and is available to be
assigned, it will appear at the top of the screen, at the "l'asks Waiting" option. A task assignment selected
there can also be modified.

Team leaders also manage their team. In the CEPA prototype the only two management cap bilities avail-
able for the team leader are viewing project metnics and updating the schedule. Other capabilities can be
added as CEPA moves towards a production system.

The developer tasks, such as creating or modifying black, state, or clear boxes, refining clear boxes or cor-
recting code, are available to be selected only when a specific design object is assigned or a failure report is to
be corrected. When a specific design object or failure report is selected, a menu appears that lists the steps
that are necessary to complete the activity. A selection of a devlopment step (the first option typically
available) will open up a number of windows that have supporting information and windows that will
contain the files to be developed. Files -re created and organized by the CEPA. Upon exit, the supporting
files are discarded (since they are supporting information, the instances do not need to be saved), while the
user is given the option whether to save the edited files in the state data repository or elsewhere. Whenever
files are edited, the user is given this sort of option. The benefit is that the state data is kept up to date
automatically. This removes most of the administrative responsibility from the user. One can leave this set
of menus by selecting an option from the main development team leader's screen, wlich is also visible.

Options on the menu for a developer task in addition to development include holding a team review and
notifying the team leader that completion conditions need to be distributed. The team review now displays
only the edited files (in a nonedit mode) and another window which contains a file for the review minutes,
that will be stored in state data. Production versions of CEPA will use some sort of groupware that will
allow multiple indi;.-iduals to participate interactively on the workstation. Once the team review passes and
the developer is convinced that this task is complete, the option on the menu is selected, and the team leader
is sent a neoification.

The team leader sees the notifications next to the "Circulate Completion Conditions" option. Selecting the
specific object for which tie notification was sent distributes a completion condition form to each member
of the team. These forms can be read. marked, and signed by selecting the "Sijn Completion Conditions"
option for the specific design object. Once completion conditions are signed by all team members, the team
leader sees the desim object's name next to the "Receive Completion Conditions" option. Selection of this
option will allow the completion condition sheets from each team member for the design object to be
viewed, which will allow the tealn leader to determine \hether the task has been completed. .'pon com-
pletion of the review of the forms, a pop-up screen appears that gives the team leader the option of consid-
crinc the object complete or incomplete. If the complete option iselected. the desig, object's name will be
removed from the task it was next to and may lead to new options appeanng clscwhere on this or another
user s screen. If the incomplete option is sccctcd. then the option remains where it \\ s and must continue
to be worked on. When the pop-up screen disappears. the development team leaders .. ie;:. is visiblc again.

[hc next fe\ sentenes \\ill ilutrate what occurs on the screen. If a black-box -buo\" xas beitig created.
'buoy" would appear next to the black-box opt ion ol the scrcell, SctinL 'buoy ' I om- md allow edit in. and

64 S I \ RS I ak 11, 15 Softl\arc Plrocess I ooI, and I ethmikques I \,lduitirm IRport \crsi,m 1.)

when the task was completed and signed, "buoy" would disappear from next to black box. Of course, the
task to create the state box for "buoy" would be dependent on the completion of the black box, so "buoy"
may now appear next to the state-box option on the screen.

Questions andor issues are a way of circulating and archiving the process of increasing ihe knowledge or
understanding in topics related to the project. Questions can be submitted, resolved (when a questionissue
is submitted for a user to resolve), or viewed (when the response is completed and the question is returned to
the submitter). As the question or resolution is submitted, it is stored in state data as a part of the perma-
nent archiving of the project.

The development team leader is also involved with Certification Reports, which are the notifications from
the Certification team of the status of the c i-tification process for an increment, and Correction Reports,
which are notifications of corrections made by the development team to code being certified.

Finally, each engineer is given a number of general activities tha can be done. Sending and receiving mail is
one of these options. Another is viewing the Engineering Ilandbook, which contains explanations of engi-
neering or management ta,'_-s for the roles assigned to the user. I-or example, the development team leader
would have developer and development team leader entries visible in the En inecring I landbook. The Engi-
neer's Notebook is a diary that contains any information that a user may want to preserve. Files in the state
data repository can also be viewed by selecting the "View State Data" option: Finally, a user can log off
from CEIPA. The logoff option presents a user with a list of all information taken from state data and gives
the user the option of returning each file or keephig it signed out for a future session. All five of these
options are made available continuously. For example, the Enineering landbook can be visible while the
development team leader is assigning tasks. This would make tle team leader's job easier, by not forcing
him or her to memorize all of the policies in assigning tasks.

The CEPA system and the tools running under CEPA handle many administrative and communications
tasks. CEPA allows an engineer to focus on the intellectual tasks of creating and verifying black, state, and
clear boxes (specification and design data).

7.1.5 CEPA Features

The C/eanroom Engineering Process A.istant (CEPA) will automate and facilitate the features of the
Cleanroom process that pertain to organizing, planning, controlling, measuring, and directing a software
engiineering project.

The basic (UPA features include the following:

The automation of some of the planning, scheduling, and task assignment activities (activities that are a
considered a part of process F7 - Maintain Project Schedule -- and its precondition, C2 Schedule to P_
Modified Published) < 37 >;

" Authorizing (enacting) tasks as they are ,: 'coted to be worked on;

" Facilitating and archiving important communications between team nicmnbers:

" Meticulously maintaining state data. (1 sinc (1leanroom, software and olher delivcrablcs arc developed
by continual modifications to state data, not bv creating a numniber of intercediatc dell, ratlcs. Since
thc state data is continually used and mnodificd, mainritcniance i, critical.)

S('oritrollinu, access to and iodfication ofI pojcct stale datla;

" I:acilital in the a.scssmicnt of amid oin- f of th completion cnditions; ([hC coIIIencement ,'I a ib-
scltieit process is bascd on the fultillent of all complction conditions for the prcedii,_ procNcsu.)

('ontroilin., the ititcrrclationlnps arnouL taks:

S,tt,%,t Proc,> I tactiient I \pcrimcni atd IP)nm''r<tr;'m'i Irp;r timm 65

* Controlling and facilitating the access to state data and tools in relation to tasks. (A staff member exe-
cutes a task when assigned.)

Through CEPA, (he staff member is assisted in accessing state data and a tool, if needed, before starting
work on a process. There is little direct communication between processes, where a response from one
process is a stimulus to another; the output of a task is put into state data and acquired by succeeding tasks
as needed. All information necessary for a task to be completed is found in state data.

Roles Represented in CEPA

The roles that are a part of CEPA are the following:

" Program Manager

" Software Engineering Manager

" Specification Team Leader

" Development Team Leader

" Certification Team Leader

" Review Team Leader

" Specification Team Member

" Development Team Member

• Certification Team Member

" Review Team Member

" Process Engineer

" librarian

" Business Manager

" CIPA Administrator

lhe CFPA prototype will have the following roles' activities:

" Software 1Enpneering Manacer

" l)evclopment Tcam Leader! Developmcnt Team Member (one engineer who has both roles)

• Certification Team leader;Certification Team Member (one entineer who has both roles)

")cvelopment [cam Member

" Specification 'l cam leadcr Specification leam Member (ince SpCcifications are astlmed complete, one

of the other participants can assume these rolcs also).

(The other (lcanroom roles w ill show on role selection menus, but a "election of such an itc1n will pC>Cllt
only a text description of the role-)

Proccs.scs ailable to Roles

Ii t, rls ol lnmril optiols that the roles anC elct, Thc h oiI n are ,ilihi tor all of lth rolc, IlleinTIoled

above for the prototpe cae "tu\IL dcnionxtrition 'Clntino:

* l)ot -iened taisks (fo r clch rol!c, th tah t \ pc, \ ill he d,', Tlt,1 i1 , ' ',t L , d Atll b, 1,,'v, 1

* ".wh~iii (,)ltetiojll [,lsli."

w(III kI I I IJ clt. l t 't,,t '!t ... I ,lt| [,< ilqu . I ' i lii,: p q 1<,i [

" Resolve Question/Issue

" View Answer to Question/Issue

" Circulate Completion Condition List

" Mail

" Modify Engineer's Notebook

" View Engineering Handbook

" View state data

" Logoff.

For each role, the screens are similar to the development team leader's screen that was previously discussed.
The descriptions of the tasks are also similar. For that reason, only the screens for the other roles will be
presented on the subsequent pages, as (Figure 21 through Figure 27). Interested individuals may want to
refer to the CEPA Specifications < 36 > for a more detailed description of the capabilities for any role.

-S,1ft%..*fc 0++t, l*t+tltI\+lr cl *it ~~+,+T.l,, 't,*~t,+ 7

LU 0

0 Q

I- 0 MW

LL 0
4 0 <- ILLZ

cc 0W 0

~ 1- Or UU)

Z Z Co Cow
<- c) z

0SW Fn FnO 0
C.) cr U) (n

V0 < <wc

.0

0)

0

U) cr r-U)

D CL

z ~ ~ z -
00

W 00
0 000.

0 F-

_z

000

<

I~ ~ ~ 0gr 1 -... d iisrtrSre om t

68 S A S lak S 5Cofwr a: cs ol ndltrye epr eso .

0
0

0

q 0
Sk 0

UJ 0)

.2 aO C) 4A

a: ~ C- 0
00 C

0 CL % (j)

z O 3. a

OlE 4

'C~ CD0

z 0I- 00 G

0

IS Ij 3 cc 0 0 T
w Ca) 2 c --.) 2cc - mZc CD :1%

0 0

.- z z5 0

w I- 00
Oz 0O w w w

0 0. 0w - U,... Q w ~ o z
0-< w o-J0w

2 ;3 W CO 0E C -L'

1- igrC2St~ r. CL 8~ncrn \lnac SccnIom

a:twr Prcs wratnn (npeincr ari -1 U)nh srti Irpr 6

0)0

C 0 0

0~~ C C:
IA CU ? CD

v. C C 00

lu (1Jm

AU 0 0

.10 0 I

C~ U) Cy). *

z0 .9E .0 C *I
~ ~ 0

Z w o L *

i w~ -J C- ca
n. cc 0. C.- 0 W
to m &l) Ca C) OE rU 2

z C M) -, 0 -

c in G*0 o)0 0
0 U Z Ea a 0 ' -*CE

_________ r 0 CL

= a

C O -6

0 0D 0).o to..

0 000 0 o

LL U) L- iwwC. L ,
LL 0. 0 a:

-'~~u j -)I-
00 0 0~0 0 .d WU GO (nML I- 2C(

50 w)0zU U) 0
Q ~ Y)w i o ~- 0. U)

a)~~~~~. Cc00~(~ ~
O m 2

......j... -- - =Zr
0 0 0zZ j

c ~ ~ ~ ~ I 000003~~oS~ w
0000 WLA. a 00 0) . 0

I~ ~ igr 3 pcfcto er ~aCO cenIomt

70 SIA S ak S Sotwar I*
0cs .. oo6ad.ehiusI~~ uto e ot V rin 1

* I 0

- ---------- o..

A I-

', o z to"
U3 0.)

- - * _ I _

,A' I,- i , 0 z

V _ ,,, to -< j !9 z

45 3: c ol

0C 0 - I0
0 Ui z (

, o F ,

L. .< 0.-- .0
UU - z

W U v C). < , .

0 U) a 1-a
- U 0___in___ __W__ : Ya.

cc 0

, ,,_ _ * * " EZ{'

Fiur 24 etiiaio 2Fa z~ae SIree CCormat. IJ

M z ' an (A

a 0 1. 0 z

*J 2 2 0.

W -& .. x r cc U) .. r< 0 Ri a1 U~ P-. Ca

10:~k a o dW Loooooor Moi Z Wb "D

z

z2 0 2 W-
Q 0L~ ~ v

a : go i 2 c 0 zU 0J CClU - a: i- 0W U D U U 0 LL WUJP LU I-IC- M E

M CC q: ZC 2 W(n 0) Mc 2 ZZ2 2 :

uzz LU 00 "A*

I- ~ Dl- (fl00la: . 00: 000 00: 0

Figure 24. Cetfcto lear 000dc Scren orat

Sotwr Prcs 0ncmn Exeimn an Ieosro Prprto 71

0

0

0 to

CL 3:0

00

.r-2 0
- >~2

C
0 CM mj

_) 0

~ E qU 0 ~
4) --.

O D ca 0.

C (

0 0

4n 4) V

E a) E 0

Z UC .0

z z 0

z 0 0 0

o0 t.00 0 4DOWWO
.~ LL LLa

Moooo W ooa- od O a. 0 00Je0A

Z a)0 zU z U

to to 's aC

0 0 0 0U -- ---- 0 0

zO

A U) > W

FigureW 25 pcfeSre omt

72 STAR Tas I - SoLwar Prcs 0ot n eiiusFa unRpr eso .

um
o 0-

ii

*-,, a 'J 0

a-- o:e i I U

A.
0

cc

o h_ r. .. .2
-- - - I 0 0 .1 CI I --- --

A
-g o y 8 I IO

- o "E - 0. aZ a) ca 0a) a cc A? v 0.

-- w) - E. z a

<~ 8

. LL Z0 . D

(0 a. .i K~

Ozl- Ol-- >0 On -

zoo : - SNzoo -

0 a a a -L Co
--------------- f AI -- - - - -ai ~

000000 000 000: :ooo: 0 ooo0o00 ooo::ooo', 00000

0 0

0 0._ z 0
i ,,, 0 Fm

(0 m Z (Ow Z -z

) <) I W C1) Q Q- . W O -

-J -

S0 0 w 03 0w : w to

U- w L Z F- 0
0 z- z20

I- m - 0 <0 n 0 r >

ur S2C)F UU a
ui > U) 0 L

'igure 26. I)e'eloper Screen a ormat.

Software Process I nactmnn I xprirent an~d)ceonstraton Preparation 73

- 0

!a aSa ------

* M

- ... O Cc W Z

CO a CA *~ WO a or

A) 0 U) § w

(...
*r -.

CD C.) cc

zZI < "-
Ci Z- a0r C/ ----- -- " [--Z

< 0o0.. F < _ 0 p m0
F r w a W () I-- <

C -u)w I W ,,w-.ZC0 w (1) 1f - r
F0 a I-Icc

,.Cl WU. . -cc C 0

Z 0 w 00 w 0 0
cc CrcilI Cr C

>- w -- I ar-U) cc < w w < Z 1< a01-- 0ul 0 z CD
0<w w Mr CC w 0 InzU

m3 > r CL as.-~ c

0

;_ 0 0uCD

z zz

0 L 0 X0

- -C 0 ij I-0

,.. W ,._ -- L o

~~cr= n w <w03.Cm

z z

0 0 0 0 lip

. .. /)-- .. t

-- --- ------------ (t

a00 00 :000 oo0::000: 00 00

0

D v v 0 w w V/

o~~~/ 0 z J~ g
z2 0z 0

0 w
I- O~-001 >i Op> l)

Figure 27. Certifier Screen F ormat.

74 S'IARS 'lask IS-I 5 Software Process 1 nols and I echniques I saluation Rcpc:rt Vcr ;on 1.0

7.1.6 CEPA Tools

The CEPA system handles a number of the control flow issues pertaining to the Cleanroom process. Addi-
tionally, tools must be made available to assist engineers in completing their assigned work. These tools are
not actually a part of CEPA, since different tools that satisfy a function can be interchanged. The key point
of CEPA is to provide a useful suite of tools to the engineer to support his or her Cleanroom engineering
activities, as they are needed in following the Cleanroom SDP.

Tools may be invoked to assist an engineer in completing a task. In the prototype CIPA, many of the
necessary tools are mimicked by WordPerfect. For a production CEPA, actual executable tools are required.
These tools assist an engineering in completing a specific part of the Cleanroom process. The tools do not
ease the creative tasks for engineers, but they ease organizational and administrative issues (actions that can
be automated), so that engineers can focus completely on the creative tasks. The types of tools necessary for
a CEPA include the following:

• Box Structure editor to facilitate the design of black, state, and clear boxes, as well as refinements to
clear boxes.

• Verification aid to focus the analysis and reporting that is involved in the verification process.

• Markov analysis tool to assist in creating the usage profiles.

T Test scenario generator to automate the process of selecting and generating test cases.

* Correctness aide to assist in process assessment.

" Statistical tools to aid in computing failure and mean-time-to-failure data.

• Project Planning and Scheduling tools to aid in developing plans and schedules.

• Process 3,anagement and Control tools to aid in the day-to-day flow of the project entities through the
defined processes.

Each tool would obviously be tailored somewhat to fit into the Cleanroom process. The intent would be to
build CEPA in as general a manner as possible to eliminate the need to tailor a tool for CEPA. For
example, issues such as reading from and writing to state data would need to be handled by CEPA, not by
the tool.

7.1.7 Using CEPA (continued)

CEPA is used by selecting options visible on a screen that is defined for a specific role. The actual options
have been listed in the sections above. Conceptually, selecting an option can be considered to be selecting a
work unit or t,..sk to work on. Selection of any option will cause an external tool or feature (the name griven
to functions to complete tasks that are a part of CEPA, not an external tool) to be activated, with the neces-
sary corresponding information. Completion of a task will allow necessary data to be saved and will return a
user to the general screen for that user's role.

It must be emphasized that although any specific unit of work can be started by selecting a sin~rlc screen
option. to create and complete a unit of work multiple screen options may need to be selected by a number
of users. IFor example, creating a black box really entails the sequence of creating a task assioenrnet to create
a black box (done by the development tean leader), selecting the black box to create, editing the black box
(both doie by dc\clopcr), and conducting a team review for the black box (done by team). ()nce lhesc 1el,
are succcssfully completed. the developer must prompt the development teami leader to distribute the coni-
plction conditions for the ta'k, then upon distibution bx the tcam leader, the entire dcvclopnlt tcani ni-t
sign completion conditions, which are returned to the development team leader to decides wvhcthcr the task
has acttiallk been completed. At that point, the task disappears from the list of tasks to be complcled. ()f
course. the completion of one ta~k may bc the precondition tr amiotlier. [or thc,c reasolos, taks should be
Sei\ecd as a 'c ucc'" of activities %\ hen cm nI)!,' t umil c l Of A sciIc tisk, from crcalhon coi -

S.'ttIa.;irt' IPrce'ss I niltxiulcilt I \ptr~lrlcltIl mid I)rrmm mr;mmil IPrcpmlr~tioni 7]5

pletion. The sequences of activities necessary to complete different types of tasks, with specific references to
the CEPA specifications (such as stimulus numbers), appear on the subsequent 9 pages (Figure 28 through
Figure 36).

76 SI N\RS I lak IS IS Sofimmtrt I'roc coo I, ;miid I ~Imthique's I lhjio Report \vr'i,, 1.01

o 0

00

0Z 0

0, W) 4

00

LIP- u~

N -A

S0 0>

4)

A 4-">

*1 0

E .2
0 0

- 0

cz; 0.

j/7.2

UFigure 28. Using CEPA Facilities to Perform a 'Black Box J ask'.

Software Process linactment Lxperiment and D~emonstration Preparation 77

0
'00

L4 0

0 E

0

cl)

00) * -

GO 0 0 4)C. z)uu

0 0Z

4)A)

00

00

UU

0 - 4)

(L tt/L V

F igure 29.t Liiq (+ PA [-acilitics to Perform a 'State Box'I 1ask.

78 S_ I A RS Task IS 1S Software Process J ools and 'I echniques Evaluati on Report Ver i on 1.(0

42)

0 >

4) 4.
z- -

> *)

0.,0

030

0

E 44)

4.))

04

.00

0~ (A0

l) 4) 4

"0

F iur 3. sig EP Iacliie t Prfrma (iarBo Tsk

Software~~~~~~ C)oesEatetVxeletan ~mitainPeaain7

AI DA255 945- SOTWRRE TECHNOLOGY FOR ADAPTAALE 2 %

(STARS) PROGRAM SOFTNA., (U) IBM FEDERAL SECTOR DIV
SGAITHERSBURG MD W H ETT 30 SEP 91 03705-001 XC-AFSC

UNCLASSIFIED F19628-88-D-O032 NL

IIIIIIIIIII[I
IIIIEEIIIIIII
IIIIIIIIIIIIIl.
IIIIIIIIIIIIII
IIIIIIIIIIIIIu
IIIIIIIIIImIml

2- 1 1112

2.0

11111 1.25 -- .4 16

00

00

0 0

* 0

_ 0

~4 z

U, L)

0 0 0

4- 4- V) u~

0 0 C- C

U ->
4.)1 0

*U 00

4.) 4.)

0 0

C4.)

Figure 31. Using CEPA Facilities to perform a 'Refinement' Task.

80 STARS Task IS-15 Software Process TFools and Techt~iques [valuation Report Version 1.0

4)

0 00

.00

0 U 0

Od C4)

*u z

00 00 00 '

tn E. -2

V (U cc

L) 4)

-W r)ca70- 0

ot 1 0(

.- 0(U 4) 4>

LL~ U0 ~E

V

- -U

Eigre 2. sin CE A Fciltie t Pefor a orrctig Cde as . 0

So-aePoesOncNnExeien n eosrtinPeaain8

CC

>U.Q

0 Ce)

_ _ _ __0(304.

_ _ _ _ _ _ _ __ 0W

00

0U U 4. 4)
0o >

00 4.) V-1
Cu 4.) 4) 4.A

*Cu 0 4 P.

> u U 4)~-

4)W W ~I S)

C) 0

II E

0 0
0 U

00

C) 0

o 0

eCZ 4.)

U En

Figure 33. Using CEPA Facilities to Perform a 'Design Cernilication"Iask.

82 STARS Task IS-I15 Software Process Tools and Techniques Evaluation Report Version 1.0

ci

t: 0
8u u

e .. M

as 4.

0

lid 04NO))4

Figur C4. Enin C4P 0aiite zoProma"~dcCriiin ak

> U)

4- 4)

oo

~ E I E

0" o~00 0

.0 U0

oO 0 Q~U
U)= U

C4-

Figure 34. Using CEPA Facilities to Perform a 'Conduct Certification' I-ask.

Software Process Enactment Experiment and Demonstration Preparation 83

CdU 0
0

0

-- 4-b

W) 0

000 >

00 42

-T ,
oE

°OiM
4-. I

r1 4W
0W

U) 4
CV

.0 4

Figure 35. Using CEPA Facilities to Perform a 'Submit Resolve a Question' Task.

84 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

00

0 n
°U

5 2)

0 000

00

0

4-A4

U04

"~ 4)

C14- Cu*

o r,,/3 =

F~igure 36. Using CE:PA Facilities to Perform a "Failure Report Correction" "ask.

Software Process Enactment E~xperiment and Demonstration Preparation 85

nn ! I I

7.1.8 Conclusions and Lessons Learned

The prototype CEPA delivered at the end of the S phase is only a prototype of a portion of the software for
a SEE and all tools are only prototype tools. The prototype CFIPA provides an impression of what the
software for a SEE should be like. "Look and feel" issues as well as functionality issues can be evaluated.
The Cleanroom process is visible. A number of desirable functions for the software portion of a SEE are
visible and available.

With only a modest amount of additional work the prototype can be used productively to support a
"friendly" project.

I lowever, considerable work will be required to develop CEPA into a production quality system to support
substantial-sized software development projects. To accomplish this, the following tasks need be performed:

1. Enhance and use the prototype CEPA along with rudimentary tools to design software on a real project
to learn about look and feel and required functionality.

2. Specify a complete CEPA.

The first specification should be for a CEPA implementation in the same style as the current implemen-
tation. Once that has been done, it may necessary to implement such a limited version to gain experi-
ence or it may be possible to directly proceed to specifyiig software that can customize itself.

3. Specify and implement a complete customizable CEPA.

There need to be two parts to a production CEPA. The first is the software that is used by people on a
project after it has been customized for the process that has defined for the project. The second is the
software that reads the process definition and then customizes the software so that it defines the project
process. No design work has been done on the customizing portion of the software, so that some inves-
tigation should be performed to determine how to go about developing such software.

4. Develop versions of all the required tools to support Cleanroom engineering.

5. Adapt planning and scheduling tools to work within the CEPA environment.

The good news from the S15 project - CEPA work is that it is clear that it is possible to develop SEE
software to support the Cleanroom process since it is a defined process.

The bad news is that CEPA definition work reinforces the proposition that a prerequisite to automating a
process is that the process must be rigorously defined. The traditional trial-and-error method of software
development is not and cannot be rigorously defined so it may not be possible to develop useful SEE soft-
ware to support such processes.

86 S FARS Iask IS-15 Software Process I ools and I echniques ILvaluation Report Version 1.0

7.2 Overview of the Process for Developing Process Applications in
KI Shell

The knowledge acquisition and knowledge engineering tasks involved in defining selected aspects of process
knowledge are fairly manageable. This is due, in part, to the common understanding of generally accepted
notations to support the modeling of process knowledge. Chief among these notations is IDEFO an activity
modeling graphical notation language developed on a major U. S. Air Force program, the Manufacturing
Technology (MANTECH) program. The IDEFO notation is mandatory for use by participants of the
Industry Modernization Incentive Programs (IMIP).

The basic IDEFO notation is illustrated in Figure 37.

CONTROL / STIMULUS

PROCESS TASK (ACTIVITY)

INPUT TO PROCESS OUTPUT OF PROCESS
TASK TASK:

(DATA/INFORMATION)

MECHANISMS FOR
PROCESS TASK

Figure 37. Form for an IDEFO Process.

An IDEFO activity, represents a process task in a process model. The input and output data flow represent
data required by a process task and data or information produced as a result of the process task. The
control or stimulus flow indicates signals or events that permit the process task to be performed. The mech-
anism flow identifies the mechanisms and tools required for performing the process task. Modeling
notations, such as IDFFO, are widely available for use and provide a starting point for supporting process
knowledge acquisition.

Software Process Fnactment Experimcnil and DeImonstration Preparation 87

The development of process models using graphical notations such as IDH:0(addresses the development of
process models at the "activity level," and as such, the development of activity threads for a project is referred
to as "activity-based process modeling."

Given a specific model for representing the process knowledge acquired, for example, lDFFO, the next step is
to transfonn the IDEFO diagrams into a form that is enactable by a process enactment mechanism, such as
KI Shell. In this process, numerous clarifications to the meaning of the process models developed will be
required. To enact a model, an appropriate subset of activities (or process tasks) must be presented to the
users, according to their project responsibilities. This is the concept underlying the role object in the KI
Shell. A KI Shell method consists of roles, which in turn consist of a collection of activities to be performed
by each role. Thus, the activity-based process models must be analyzed from the perspective of the agents
who will be responsible for enacting selected processes. It is from this analysis that activities or process tasks
are allocated to user roles. This is referred to as "role-based process modeling," and usually requires an
activity-based process model as a precondition to performing role-based process modeling.

Another significant refinement to the activity-based process model would be specifying how inputs are trans-
formed to the output of each process task.

The complete process for developing the software for enacting the role-based process model will now be
described.

7.2.1 Process for Developing KI Shell Process System Applications

The KI Shell can be used to develop an executable Process System. By process system v ! mean the "system
of processes" selected, defined, and designed to meet the process requirements of a software development
project or a software development organization. A process system is developed by creating an architecture of
processes to satisfy a project's requirements and preparing a design to implement the architecture. IDFO is
a useful tool for modeling the processes required for a "system of processes" to support a project. Role-
based process modeling is a useful activity for taking a set of processes and organizing them, based on user
activities, to acquire sufficient detail to record them in a form suitable for enactment and presentation to
process T':c'rs. Thus, the result of i,,lementing a system of processes to support the enactment of a
project's software process, in an executable form, is referred to as an executable process system. We view the
output of the processes codified in a KI Shell application as an executable process system.

The following definitions are useful in discussion below:

I. "AS-IS" process -- a systen of proce.sses that currently exist to support the development or production
of some product, e.g., a software system or a computer system.

2. 'TO-BE" process -- a desired system of processes needed to support the development or production of
some product.

3. Process domain expert -- domain expert of a particular problem domain as well as the processes gov-
erning that problem domain.

4. Process engineer -- expert in acquiring, representing, developing, and implementing process models and
cnactable process systems.

lie stcps required to implement a KI Shell application are as follows:

I. SIIP 1:

lntn Initiate project.

iask: Create an ".\S-IS" ll)l::0 model of the current process. This is performed b\ tic Iroccx
I)omain tLxpert.

Validation: 'Team review and acceptance of the II)F i model.

88 SI RS lask IS-15 Soflware rocess I ools ard lechniquc, I v,tuatioii Report Version 1.0t

Exit: Accurate II)1(0 "AS-IS" model.

2. STEP 2:

Entry: "AS-IS" process description.

Task:

* Analyze the "AS-IS" process and derive the "TO-BE" and desired process.
* Identify different "slices" or increments that could be implemented.

These tasks are to be performed by the Process Domain Exper; in conjunction with the lIrvProcr
Engineer.

Validation: Team review of the "IO-BE" process.

Exit: Agreement of the potential "TO-BE" process increments that could be automated.

3. STEP 3:

Entry: 'TO-BE" process increments.

Task: Perform cost/benefits analysis on potential process increments to be automated.

Validation: Team review of the cost/benefit and selection of increment to be implemented.

Exit: Agreement on "'TO-BE" increment to be implemented.

4. STEP 4:

Entry: All process definition documents related to the method increment are made available to the
process engineer.

Task:

P Present the KI Shell modeling concepts, tradeoffs, and user interface to domain experts.
* Jointly develop an initial method layout. This team task is to be performed by domain experts

and knowledge engineers.

Validation: Initial methods reviewed. Participation of domain experts and process ciigiecrs.

Exit: Formal adoption of initial method layout.

5. STEP 5:

Entry:)etailed specifications provided by domain expert(s).

Task: More detailed process model developed bv process engineers.

Validation: Formal walkthrough to establish common understanding of processes and how they will
be enacted.

Exit: Formal adoption of initial increment to be implemented.

6. STEIP 6:

Entry: Detailed process implementation construction plan prepared.

Task: Implement process increment.

Validation: Validate implementation by exccution az.inst proccs test cases, prepared from the
deficned process being implemented.

Exit: ..Accept increment.

Software Process I ntmiti I xpriment and l)eronstration 1'rcparaion 89

7.3 CEPA Prototyre- System Development Implementation Log
Overview

The purpo-c of this section is to provide an overview of the CFL PA Prototype System development. The
comp) "CFEPA Prototype System Development Implementation Log" will be provided as a supplement to
this report.

7.3.1 March 23 through April 19

Entry:

1. All cleanroom documents made available.

Process:

1. Clarification of implementation team questions regarding Cleanroom.

2. Layout of iitial method in KI Shell modeling notation (Figure 38 on page 91, Figure 39 on page 92).

3. Presented K! Shell notation to SE1T and IBM using Cleanroom Example from the "Cleaniroom Engi-
neering Software Development Process."

Validation:

1. Validated methods against the "Cleanroom Engineering Software Development process.

Exit:

I. Method layout informally reviewed by specification team.

2. Implementation team provided CEPA draft specification for CFPA prototype system.

7.3.2 April 22 through May 3

Entry:

1. Method lay out informally reviewved by specification team.

2. Implementation teamn provided CIPA draft specification for CT PA prototype system.

I. Discussion of modeling tradeoffs b\ limplezrentatlonl tearn.

2. Irilplemenrtat ion team memnbers discussed developmient (if a process-centerd ixmp~liwent at ion stratcuv
based on KI Shell concepts.

Validation:

1 infornial \ aliditioti of imnplienttition aipproach h\ dcmmlowltralt mU.!Initial! (I PA\ comcp to spccificattiol

1 . (TP l P\inplemnrtaition approach lntorllbtl \ alidted,

(90 S I \ 1RS I as;k IS I Sott\mar Irote look ~I anid I -~ IhfiqIlc- I \aluatiori Rcpott \ er~rio 1.0

C-t a I

2 0

eIi ijj !~ i
tMt

-0** -. !°

Ca

1 ,

I' I

ra

-iue3.(laro rcs -etodLayut oat Cof2)

S A

Ii u
.2 i -F

0 ~C(
C 0 E 0EL~~N E~lI ~~j 4 0

Fiue 9 lenom rcesMthdLyot(Pr o')

Softwar Prcs ncmn xeimei ndDmntrto rpaain 9

ESS

IAI-J -- f .L4

- C-

*.~~ 2 U c

C)C

C

Figur 39.! Cla o Prcs Meho Laot(at2o)

92 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~0 STR Tas IS1 Sotwr Prcs Tol an Tehiqe EvlainRpr eso .

7.3.3 May 6 through May 24

Entry:

1. CEPA implementation approach informally validated.

Process:

1. Developed initial Construction Plan by implementation team.

2. Identified questions for specification team.

3. Studied CEPA specification, revision 1.

Validation:

1. Informal validation of CEPA implementation approach (i.e. mapping of CEPA specifications to KI
Shell model) based on documentation.

Exit:

1. Review of Construction Plan by specification team.

2. Review of updated CEPA demoastration by specification team.

7.3.4 May 27 through June 12

Entry:

1. Review of Construction Plan by specification team.

2. Review of updated CEPA demonstration by specification team.

Process:

1. Execution of Construction Plan by implementation team.

2. Key features of CEPA prototype system implemented.

Validation:

1. Demonstration reviewed by specification team.

Exit:

1. Review of implementation approach completed.

7.3.5 June 12 through June 21

Entry:

I. Review of 7"nstruction Plan by specification team.

2. Review of updated Cl-PA demonstration by specification team.

Process:

I. Execution of Construction Plan by implementation team.

2. Key features of CFPA prototype system implemented.

Software Process Enactment lxperiment and)emonstration Preparation 93

Validation:

1. Demonstration reviewed by spzciiication team.

Exit:

1. Review of implementation approach completed.

7.3.6 June 24 through June 28

Entry:

1. Review of implementation approach completed.

Process:

1. Presentation of the KI Shell User Interface implications of the process model to the implementation
team.

2. Developed new CEPA screen regime. (Screens are available in the "Cleanroom Engineering Process
A~sistant" specification.)

3. Completed redesign of KI Shell approach to implementing the CEPA system by exploiting KI Shell
mechanisms.

4. The redesigned approach to implementing the CEPA system was required to take better advantage of
new KI Shell features and to improve the presentations of CEPA to the end-user.

Validation:

1. Review of redesigned method layout with specification team.

Exit:

1. Agreement by both parties on baseline method layout.

7.3.7 July 1 through July 30

Entry:

1. Agreement by both parties on baseline method layout.

Process:

1. Implementation of redesigned CEPA by the implementation team.

Validation:

I. Final CEPA validation testing by the specification team.

Exit:

1. CEPA ready for use to support buoy problem development.

94 StARS I'ask IS-15 Software Process Fools and I echniqucs ILvaluation Report Version 1.0

7.3.8 CEPA Prototype Development Summary

The CEPA prototype was developed by using the spiral model, where each spiral increment had a set of
goals and objectives and progress was reviewed against those objectives. At the end of each increment, the
construction plan was reviewed against progress, and a plan for the increment was drafted. Increments were
planned as two-week segments.

The CEPA prototype development is characterized in Table 2.

Prototype Stage Goal Duration
Number

Convey to implementation
Requirements Capture / team KI Shell application
Knowledge Engineering development concepts and 4 days

clarify requirements

Demonstrate Cleanroom
process support, while

2 Requirements Capture / clarifying aspects of the 4 weeks
Knowledge Engineering Cleanroom process,

through prototype devel-
opment

Modify requirements engi-
Interim Prototype Systems neering prototypes to
Development conform with the CEPA

specifications

Enhance interim proto-

Final Prototype Systems type's man-machine inter-
face to accommodate 5 weeks

Development improved role screen

design

Table 2. CEPA Prototype System Development Summary

7.4 Cleanroom Engineering Process Assistant Installation Instructions

In order to install the Cleanroom Engineering Process Assistant prototype system on an IBM Risc
System/6000, you must follow the steps described in this section.

7.4.1 Pre-installation Activities

1. Check on the configuration of the target IBM Risc System/6000 on which CEPA is to be installed.
CEPA requires:

a. AIX 3.1.5 (with the 3005 maintenance and updates applied)

b. ANindows

c. 16 megabytcs of main memory

d. 600 megabytes of total disk storage

e. PlY devices should be set to 64, using SMIT

f. Number licensed users should be set to 3-32. using SMIT

Sotiware Process IEnactment I xperimcnt and Demonstration Preparation 95

2. Obtain a copy of the following software:

a. Oracle RDBMS (Version 6 or higher), SQL*NET, and SQL*PLUS10 (available from Oracle Corpo-
ration)

b. KI Shell runtime (available from UES, Incorporated)

c. WordPerfect 5.0 for AIX (available from WordPerfect Corporation)

After the computer hardware configuration has been checked and the necessary software has been
acquired, continue to the next step.

3. Create the following file systems from the "root" account:

a. /u/oracle -- 60 to 90 megabytes, depending on Oracle products you wish to install, besides the basic
CEPA application

b. /u/wp5O -- 16 megabytes

c. /u/kishell -- 86 megabytes

d. /u/cepa -- 16 megabytes.

4. Establish the following computer accounts from the "root" account:

a. oracle -- Oracle database product home account

b. wp50 -- WordPerfect 5.0 product home account

c. kishell -- KI Shell and CEPA product home account.

Make sure that the home directory for the above accounts refer to the file systems created. Further,
make sure that these accounts employ the "C" shell (/bin/csh).

In creating these file systems, select the "automatic mount" option.

5. Mount the file systems that have been created

7.4.2 Install the Oracle RDBMS

An overview of the Oracle installation instructions are provided here. Please refer to your Oracle installation
and planning guide to supplement the below instructions. The following instructions apply to Oracle version
6.0.31.0.1:

1. Logon onto the "root" account

2. From SMIT, create groups for "dba" and "oracle"

3. From SMIT, assign both the "root" and "oracle" accounts to the "dba" group

4. Change directory to /u/oracle ac -- cd /u/oracle

5. Enter pwd at the AIX prompt to verify

6. Mount the oracle tape and enter:

installp -d idev!rmtX all

where X is the tape drive device number.

7. After the tape has been installed, reboot the IBM Rise System 6000 by entering:

shutdown -rF

10 If method recompilation is required, PRO*C and its libraries must he oblained.

96 SI ARS lask IS 15 Software Process lools and lechniques [valuation Report Version 1.0

8. Logon onto the root account

9. Set the path by entering:

set path = ($path .)

10. To execute oracle install enter:

./oracle.install

11. Make sure oracle home directory is set to /u/oracle

12. Accept the defaults for the logfile, oracle owner, local bin directory and install manual pages.

13. After the message "ORACLE BOOT install completed," reboot the IBM Risc System/6000 by entering:

shutdown -rF

14. After the reboot has completed, complete the installation instructions -pecified for "Completing the
installation as 'oracle.'"

15. After ORACLE has successfully completed, edit the file "/etc/services" and add the following entry:

orasrv 1525/tcp

Note: make sure the number is unique, and must be the same for all networked machines wishing to
use an ORACLE database over the network.

sqldba startup -- to startup the oracle database

tcpctl start -- to starts up the oracle SQL process

16. Request all users to logout

17. Shutdown ORACLE, by entering the following commands:

sqldba shutdown

tcpctl stop

18. Reboot the IBM Risc System/6000.

7.4.3 Install the KI Shell / CEPA Files

1. Log on to account: kishell

2. Change directory to /u/kishell

3. Issue a pwd command to check on your present working directory

4. Insert KI Shell/CEPA tape into the tape drive and enter the following command:

tar -xvf /dev/rmtX -- where X is the tape drive device number

5. Copy/append the samplesfcshrc.add to .cshrc

6. Edit the .chsrc file and complete the required values. The following is a completed .cshrc file:

Software Process Enactment E-xperiment and I)emonstration Preparation 97

Replace the ' appropriately and add to the end
of the user account .cshrc

setenv ORACLE HOME oracle # Oracle installation directory
setenv ORACLE SID CEG # Oracle database instance is
setenv WP_BIN wp50/bin # Word Perfect bin directory
setenv KI kishell # KI Shell installation directory
setenv KI _BIN SKI/bin # KI Shell bin directory
set path = (. $path $WPBIN SKIBIN $ORACLEHOME/bin
setenv KIDBHOST T:ibmrsl:$ORACLESID
setenv KISYSDB kishell # FileStore database location
setenv XENVIRONMENT SKI/Defaul ts/Ki Shell
setenv WPTERM gui_color
setenv WPTERM50 guicolor
set history=50
set filec=1

7. Create a subdirectory of /u/kishell called CleanRoom by entering:

mkdir /u/kishelljCleanRoom

8. Read in the "CleanRoom methods" tape" by inserting it in the tape drive, and entering:

tar -xvf idev/rmtX -- where X is the tape drive device number

7.4.4 Create and Setup the CEPA Account

1. From the "root" account, create the "cepa" account. Please include the following during the setup of this
account:

a. home directory: ju/cepa

b. shell: /bin/csh

2. Read in the diskettes entitled "SNAPSHOT.INITIAL' into the home directory of the "cepa" account by
entering:

tar -xf jdevirfdO -- where rfdO is the disk drive

3. Make a directory called STATE in the /u/cepa directory by entering:

cd iu/cepa -- to change the directory

pwd -- to check the present working directory

mkdir STATE -- to make the state directory

4. From the root account, set all file and directory protections for /u/cepa to 777 by entering:

chmod -R 777 *

5. Edit (using vi or another editor) .cshrc and set ORACIE_Sl), ORACLE IIOME and set the paths to
the ORACIE, WordPerfect and KI-Shell executables.

6. Edit (using vi or another editor) the following files:

a. RunSmall

b. RunSmallFS

c. RunPrint

1 If source tape. read in method source code and associated maketiles.

98 SI ARS Iask IS-15 Software Process 'Tools and I echniques [valuafion Report Version 1.0

d. RunPrintFS

Set KIDBHOST -- example: setenv KIDBItOST T:ibirsl:$ORACLESID

Set DISPLAY -- example:

setenv DISPLAY unix:0 -- for IBM Risc System/6000 Console

setenv DISPLAY xsl:0 -- where the xs I is the hostname of the X-station

setenv DISPLAY falcon:unix:0 -- where falcon is the hostname of the workstation (SUN)

7. Link CleanRoomX and CleanRoomXFS to the appropriate executables by entering:

rm CleanRoomX

In -s < CleanRoom method directory > /CleanRoomX.

rm CleanRoomXFS

In -s < CleanRoom method directory > /CleanRoomXFS.

8. Run the CEPA method using RunSmall, RunSmalFS, RunPrint and RunPrintFS. Project name
(defined by CEPA Administrator) should be set to BuoySystem.

Note: If WordPerfect hangs up delete all WP related processes:

ps -ef grep wp (gives you process ids)

kill -9 < process id >, < process id > ... (deletes the processes)

9. Copy the .cshrc file in /u/kishell to the /u/cepa directory by entering:

cp /u/kishell/.cshrc /u/cepa/.cshrc

7.4.5 Setup the CEPA FileStore Version

1. Create the following CEPA working accounts:

a. sem -- systems engineering manager

b. stl -- specification team leader

c. dtl -- development team leader

d. develop -- developer 1

e. dev2 -- developer 2

f. etl -- certification team leader

g. certifi -- certifier 1

Please include the following during the setup of this account:

a. home directory: /u;cepa

b. shell: ;binicsh

2. After the accounts have been established, send a mail message to each userid using the UNIX mail
facility by entering:

mail ccpa sem stl dtl develop dev2 ctl certifi < enter >

Subject: CE PA Accounts Established < enter >

Account esablished -- message ends. < enter >

CC: < enter>

Software Process !nactient I xpcrimcnt and I)eonsration Preparation 99

3. At this point the FileStore version of the CEPA method has been installed and may be executed by
logging onto the "cepa" account and entering:

x,-it

RunSmallFS or RunPrintFS. (RunPrintFS is intended for screen printing.)

Note (1): Since the FileStore version is single-user, exit from each user before starting up the CEPA with the
next user.

Note (2): To exit from X-Windows, close all windows in the X session. After all windows are closed, press
the left mouse button and select the exit option. After completing this, press ALT-CNTL-BACKSPACE.
This returns the workstation to command line mode.

7.4.6 Setup the CEPA ORACLE Version

1. Create ORACLE users named "kishell" and "CleanRoom" (case not important) by entering the fol-
lowing:

sqlplus system/manager

grant dba to kishell identified by sysmanager; < note semi-colons! >

gra;. csourcc, conamct to cleanrroom identified by cleanroom;

commit;

exit

2. Login onto the "cepa" account and import the ORACLE dump stored in Export/CleanRoom.dmp into
ORACLE by entering:

imp cleanroom/cleanroom

When prompted for the import file name, enter:

Export/CleanRoom.dmp

Select the defaults for all other prompts.

3. Change directories to SysMaint and import the SysMaint database by entering:

cd SysMaint

import kishell sysmanager

(NOTE the difference between the two imports: The imp is the oracle import; the import is the KI
Shell import.)

4. The ORACLE version of the CEPA should now be installed. Login as "cepa" and enter:

xinit

RunSmall (or RunPrint).

100 SFARS Iask IS-15 Softwrare Process 'lools and I echniques Ivaluation Report Version 1.0

7.4.7 Archiving the CEPA Database

In order to make an archival backup copy of the CEPA database, the following procedure should be per-
formed:

1. Open the CEPA window.

2. Change to the main CEPA directory for the CEPA account by entering:

cd /u/cepa

3. Obtain a dump of the oracle database by entering:

Utils/OraExp

4. Upon successful completion of step 3, change the directory to Export by entering:

cd Export

5. Rename the dated file to a suitable file name by entering:

mv Sep_ 10_ 1991 .dmp Workinprog l.dmp

6. Change the directory to the main CEPA directory by entering:

cd /u/cepa

7. Format 4 diskettes, insert a diskette into the drive, and backup all of /u/cepa directory by entering:

tar cvf /devirfd0 *

7.4.8 Restoring an Archived CEPA Database

In order to restore an archived CEPA database, the following procedure should performed:

I. Exit from the CEPA system before initiating a restore.

2. Log onto the "cepa" account.

3. Change the directory to the home CEPA directory by entering:

cd /u/cepa

4. Run the CEPA demonstration account housekeeping utility by entering:

reload.exe

5. Enter the SQL*PLUS utility to delete CEPA tables by entering:

sqlplus CleanRoom/CleanRoom

6. To delete the CEPA tables, enter the following SQL*PLUS COMMAND:

SQL > start Utils/deltable.sqp

7. To exit from SQL*PLUS enter:

SQI. > exit

8. Restore files from tar formatted disks by entering:

tar -xxf dcv rfd0

9. Import the restored CIEI'A data by entering:

tar -xif dcv rfd0

10. Import the restored C(T'A data by entering:

Software Process Fnactmcnt I xpcrimcnt and I)ernonstration Preparation 1 01

imp CleanRoom/CleanRoom

11. You will be prompted to provide a filename for file import; Enter "Export/ Yourl- le.dmp" at the
prompt:

Import file: expdat.dmp > Export/YourFile.dmp

where YourFile.dmp is the name of the CEPA database dump file to be restored.

At the completion of the CEPA database restore, the message "Import terminated successfully" will be dis-
played. Your CEPA database has been restored.

7.5 CEPA Demonstration Operation Instructions and Script

7.5.1 CEPA Operation Instructions

To run CEPA, open an X-Window session by using the "xinit" command. Within the X-Window, log onto
the appropriate cleanroom role by invoking "RunSmall." Instructions for initializing, archiving, and restoring
the CEPA database are discussed in an earlier section.

7.5.2 CEPA Demonstration Script

It is desirable to use the CEPA prototype by showing it to software engineers and other people interested in
learning about and studying software development process. Through interactions with these people, one can
learn about the usefulness of software engineering environments.

The CEPA prototype is an engineering model of the integrating component of a Software Engineering Envi-
ronment (SEE) that supports Cleanroom processes and engineering practices. The Cleanroom processes and
engineering practices are built on a firm science base.

The purpose of the CEPA model is to:

1. Determine the feasibility of developing a useful SEE,

2. Develop requirements for a production-level product, and

3. Learn how to build and use such a product.

We know as a result of building a prototype CEPA, that a robust product version of CEPA can be devel-
oped. What we do not know is whether a CEPA is useful to practicing software engineers nor do we have
real-world experience to develop requirements for a production-level CEPA. The first step in obtaining this
information is to begin to demonstrate CEPA to interested people and obtain their reaction. CEPA demon-
strations should be as open-ended as possible.

We believe that the CEPA model is the most advanced work yet done in the process world, either in the
university or the research community. Therefore, we all have a great deal to learn by showing CEPA\ to
people and soliciting their reactions.

102 SlARS iask IS-15 Software Process I ools and I echniques Ivaluation Repoil Vcrsit,, 1.0

7.5.3 CEPA Demonstration Script

The situation being demonstrated is three engineers (one development team leader and two developers) using
three different workstations simultaneously in simulated time. But since there is only one person giving the
demonstration (the demonstration manager) and one audience, the demonstration manager must move back
and forth between roles at will to show the audience what is going on with each person. As a result, the
script must leave a good deal to the discretion of the demonstration manager. I le./she must be able to move
back and forth between simulated roles as desired or as prompted by questions.

Preconditions:

1. Setup roles.

2. Setup state data with problem in some stage of completion with several boxes complete.

3. Adapt screen ready to go.

Demonstration situation:

1. One work station that will support 3 users. All screens for the three people are on one workstation
screen so a person conducting the demonstration can transfer between roles asynchronously.

2. The duration for the demonstration will be between 15 and 30 minutes. That will be about the limit of
the attention span during an exhibition. As one will see from looking at the demonstration script,
extending it for longer periods of time will be easy.

Events for Developer One:

1. Works on design object. This assumes the actual editing of files in \VordPerfect. Since working on any
design object leads to a number of windows' being visible on the screen, the developer will work through
some of them by designing a black box, a state box, or a clear box or refining or reorganizing a clear
box.

2. Responds to mail from others.

3. Sends mail to schedule team review.

4. 1 lolds team review.

5. Team review does not pass.

6. Does more work on the design object.

7. Submits a question.

8. Holds team review for the diesign object.

9. Team review passes.

10. Requests for team leader to circulate completion conditions.

!1. Completion conditions are circulated and eventually signed off on. While this is occurring. the developer
can go on to next task, which is a desimi object selected from the (71[1A main menu.

12. Adds a note in !Enpncer's Notebook.

13. looks at the Engincering landbook to understand how to work on the subsequent design object.

14. Works on design object.

Ii. I ooks at answer to question submitted earlier.

16 Calls up some state data to be viewed, to help create the design objcct.

Software Ir(xcss Unactmcnt I xpcrimcnt and)cmonstration P'reparation 103

17. Continues to work on design object.

18. Sends mail to schedule team review.

19. [folds team review.

20. Team review passes.

21. Requests for team leader to circulate completion conditions.

22. Completion conditions are circulated and eventually signed off on. While this is occurring the dcvelopcr
goes on to next task which is a design object selected from the CI.PA main screen.

Events for Developer Two:

I. Works on design object. This assumes the actual editing of files in WordPerfect. Since working on any
design object leads to a number of windows' being visible on the screen, the developer will work through
some of them by designing a black box, a state box, or a clear box or refining or reorganizing a clear
box.

2. Responds to mail from others.

3. Sends mail to schedule team review.

4. 1 folds team review.

5. Team review does not pass.

6. Does more work on the design object.

7. Resolves question when it arrives from developer one.

8. Iolds team review for the design object.

9. Team review passes.

10. Requests for team leader to circulate completion conditions.

i1. Completion conditions are circulated and eventually signed off on. While this is occurring, the developer
can go on to the next task, which is a de.,ign object selected from the ClPA main menu.

12. Adds a note in [nfincer's Notebook.

13. Looks at Fngneering I landbook to understand how to work on the subsequent desim object.

14. Works on design object.

15. Calls up some state data to be viewed, to help create the design object.

16. Continues to work on design object.

17. Sends mail to schedule team review.

18. 1 folds team review.

19. Team rcvicw r:,s',es.

20. Requests for leam leader to circulate completion conditions.

21. (ompletion conditions are circulated and evcntually signed off on. \Vhilc this is occurringi. the dc\clopcr
goes on to next task. %\hich is a desia object selected frtom the (*I- PA mai menu.

Events for I)ev eloper Team L.eadter:

1. Assigns tasks.

1 04 S I -\ S I ak IS-I 5 Sotht\are Process I ools and I echniques I \alualion Report Version 1.0

2. Works on design object. This assumes the actual editing of files in WordPerfect. Since working on any
design object leads to a number of windows' being visible on the screen, the developer will work through
some of them by designing a black box, a state box, or a clear box or refining or reorganizing a clear
box.

3. Sends mail to schedule a team review.

4. Holds team review.

5. Team review does not pass.

6. Does more work on the design object.

7. Responds to mail from others.

8. Looks at metrics.

9. Does more work on the design object.

10. Circulates completion conditions.

11. Team review passes.

12. Requests for team leader to circulate completion conditions.

13. Completion conditions are circulated and eventually signed off on. While this is occurring the developer
can go on to next task, which is a design object selected from the CEPA main menu.

14. looks at metrics.

15. Adds a note in Engineer's Notebook.

16. L.ooks at Engineering I landbook to understand how to work on the subsequent design object.

17. Works on design object.

18. Calls up some state data to be viewed, to help create the design object.

19. Continues to work on design object.

20. Sends mail to schedule team review.

21. 1 lolds team review.

22. Team review passes.

23. Requests for team leader to circulate completion conditions.

24. Completion conditions are circulated and eventually signed off on. While this is occuming, the developer
goes on to next task which is a design object selected from the CEPA main menu and proceeds to work
on it. This assumcs that the editing of files during the demonstration will be performed in WordPerfect.
Since working on any design object leads to a number of windows' being visible on the screen. the devel-
oper should work through some of them.

Exccuting)cmonstration:

.\ll %kork is performed in the demonstration by presing the appropriate ('1P.A buttons on screens and iming
the imnulatcd (lcanrooin tools built in\ Word Perfect.

7.6 Description of all CEPA Software Source Deliverables

Sofiwarc IVrocc, I nactnici f NP('r1mrLnit ard kniotrtrriion Ir~ rrirnoni 105

7.6.1.1 CEPA Multi-User Source Code Files

The following files are necessary for preparing the ORACLE version of CEPA, which permits multi-user
access to CEPA:

1. ProjectManager.c - Rules for the CEPA Administrator

2. SEM.c - Rules for the Software Engineering Manager

3. STL.c - Rules for the Specification Team Leader

4. Specificr.c - Rules for the Specification Team Member

5. DTL.c - Rules for the Development Team Leader

6. Developer.c - Rules for the Development Team Member

7. CTL.c - Rules for the Certification Team Leader

8. Certifier.c - Rules for the Certification Team Member

9. question.c - Rules to handle questions and issues

13. tasks.c - Code to handle the general Cleanroom tasks, e.g., Cleanroom Engineering Process handbook,
engineering notebook, mail, view state data, refresh and logoff

11. Application.c - Invoking and terminating external applications integrated into the KI Shell environment,
such as WordPerfect.

12. CRrolegraph.c - Graphical Cleanroom Display Manager (Adapt)

13. CRki'netrics.c - Process metrics capture and reporting code

14. CRKey.c - Code used to generate unique identification keys for objects

15. lnformation.c - Rules attached to the information objects required for Cleanroom process implementa-
tion

16. Utilities.c - General purpose utilities written for the Cleanroom process implementation, e.g. circulation
completion conditions, state data management, etc.

17. WorkAllocation.c - General pu-pose utilities to pre-allocate Cleanroom tasks.

18. attofid.sc - PRO*C routines for querying KI Shell objects based on their attributes. Call based on a
single attribute.

19. attofidN.sc - PRO*C routines for querying KI Shell objects based on their attributes. Call based on use
of multiple attributes.

20. kiuscrX.c - lile generated by the KI Shell method development environment.

21. dummyX.c - File for placing function call "code stubs" during software system development.

7.6.1.2 CEPA Single-User File Store Version Files

The followir , cs are necessary for preparing a file store version of C!IPA:

I. attofidNFS.c - Selects frame instances with certain attributes for the filestore version.

2. attofidl:S.c - Sel,-cts frame instances with cerlain attributes for the filestorc \ crsion.

3. CRKcyFS.c - Generates new identification keys for the tilc.,torc verion

106 S I ARS l ask IS-I 5 Soh arc Process I ook ;ilt I ectiliqucs I vahlation Report \ersim I.)

7.6.1.3 CEPA Make Files

The make file for building the ORACLE version of CEPA is:

Xmake

The command to execute make file for the ORACLE version of CEPA is:

make -f Xmake CleanRoomX

The make file for building the file store version of CEPA is:

Xmake

The command to execute the make file for the file store version of CEPA is:

make -f Xmake CleanRoomXFS

7.6.1.4 CEPA WordPerfect Files

Below are the list of files that appear on this diskette. These represent most of the files that are on the
RISC/6000. The names are different on tue RISC/6000 because of the fact that DOS only allows 8 char-
acter names with 3 character extensions. The files are organized into 3 main directories: init, broad and
sensor. Each of these represent a different increment (thus a different module). The purpose of each type of
file inside each directory are the same; only the information inside each one is different. Descriptions of each
of the files follow:

1. VERSION.wp - contains the specifications for the entire buoy system.

The following files are in each directory:

1. STEPI_FI.WP - contains stimuli and responses of the module.

2. BLACKBOX.WP - contains the black box of the module.

3. STEP3FI.WP - contains the black box validation of the module.

4. STEP4_FI.WP - lists the stimuli histories used in the black box.

5. STEP5_FI.WP - documents the decisions for state data distribution in the module.

6. STATEBOX.WP - contains the state box of the module.

7. STEP7_I.WP - lists the usage of state data in the state box.

8. STEP8FI.WP - contains the state box verification of the module.

9. STEP9_FI.WP - documents the more concrete data types for state data of the module.

10. CLI'ARBOX.WP - contains the clear box of the module.

II. STI'i I _F.W1 - contains the clear box verification of the module.

Ihe fo iowing files appear only in the init directur-y, but will be created in the other directories as develop-
ment and certification progrcsses:

I. "f!STPIAN.WP - presents the test plan for the increment.

2. .IARKOV.MO.\P - presents the modified Markov model for the increment.

3. lLSTSCRI.WP - presents the test scripts for the increment.

Sofiwarc Process IFnactinent I xperimernt and Demonstration Preparation 107

4. TESTSCEN.WP - presents the test scenarios for the increment.

5. EXPOUT.WP - presents the expected output of the test scenarios for the increment.

6. REFINEMEWP - presents a refinement of a clear box.

7. VERIFICA.WP - presents a verification of a refinement of a clear box.

7.7 Major Lessons Learned from CEPA Implementation

Cleanroom has well-defined activities and is rich in its synchronization and ordering requirements. It has
several cases of dynamic work allocation and a complex information structure. Thus, Cleanroom is a suit-
able process to be supported by a KI Shell assistant, such as the CEPA prototype system.

To fully exploit KI Shell's enactment features at the lowest implementation cost possible, it is important to
make precise, issues related to both the roles involved in developing a process system, such as CEPA and the
KI Shell features necessary to support its development. It is critical that the following project goals be
clearly understood by all process system development teams:

" Goal 1: Support the users of the process in the best way possible.

" Goal 2: Fully exploit the process enactment "shell's" capability to support the domain.

This requires good communication among the three roles involved in process system development, in the
basis of an understanding of the team members' roles and responsibilities.

7.7.1 Process Implementation Roles

There are three types of roles involved in implementing a system to support the enactment of a process:

1. Process Domain Expert, who understands how the process is to be defined and presented to the users of
the system.

2. Process Knowledge Engineer, who understands how the process enactment tool can be fully exploited to
achieve the objectives of the process domain.

3. Process Implementer, who implements the process according to the specifications of the Process Know-
ledge Engineer that are presented in terms of the KI Shell notation.

7.7.2 Key Problem and Solution

In the task IS- 15, the specification team's role was the Process Domain Expert, and the implementation
team's role was that of Process Knowledge Engineer and Process Implementer. The specification team pro-
vided detailed CEPA specifications that described a concept for supporting Cleanroom. During the know-
ledge engineering and prototyping process, the interpretations of these specifications were those of the
specification writers. To exploit the KI Shell's mechanisms for implementing CEPA, it was necessary to
convey knowledge about the workings of the KI Shell to the specification team, so that the specifications
could be presented to the implementation team in terms with which it was familiar. Thus specifications for a
process system such as the "Cleanroom Engineering Process Assistant" would be easier for developers to
interpret by spccifving processing through the use of the KI Shell conceptual model. Therefore, the specifi-
cation team and the implementation team require knowledge of the KI Shell conceptual model to effectively
plan and design executable process systems.

During the initial process of planning the implementation of CI PA prototype, there was little communi-
cation between the specification team and the Unplementation team. This caused a situation %\here the
implementation temun had to abstract knowledge from the specifications based on one conceptual model to a

108 S 1A RS I ask IS- I 5Software Process I ools and I echniques .valuation Report Version 1.0

conceptual model with which the implementers were familiar. Although the box structure notation was
excellent for conveying functional requirements, there was much room for extrapolating what the specifica-
tions meant with regard to man-machine interface and display regimes. For example, the CEPA specifica-
tion called for the following:

1. If there were no tasks of a certain type for a user (such as develop state box), that task option should be
disabled

2. If there were tasks, the user should be alerted in some manner. (the user should not have to issue a
command to find out if there are any pending tasks).

The standard KI Shell menu system did not include the functionality to support these requirements.
Further, the implementation team also had to interpret navigation logic implied in the CEPA specification.

It would have been useful for the specification team's domain experts to have understood, in a more precise
way, the KI Shell's presentation and user interface implications of the underlying process model.

Most of the above problems were remedied through an intensive two-day team communication session
where the specification team was given better knowledge of the KI Shell conceptual model and the imple-
mentation team was able to explore beyond their traditional methods for implementing process system appli-
cations by incorporating new techniques. The major lesson learned here is that to develop specifications for
complex process systems such as the Cleanroom Engineering Software Development Process, either one of
two models must be employed:

1. Knowledge acquisition through the interviewing of domain experts, the incremental representation and
validation of process knowledge, and the incremental implementation of the process system

(Using this method, both domain expert and knowledge engineer build conceptual models of the domain
and the application of the tools being employed. Where there is no shared model for how knowledge is
to be represented and employed, this is the only practical model to select.)

2. Knowledge acquisition through the analysis of prepared materials and specifications, incremental repre-
sentation and validation of process knowledge with best available personnel or domain experts, if avail-
able, and the incremental implementation of the process system.

(Using this model, it is vitally important that the specification team have knowledge of the conceptual
model of the implementation technology that is to be employed. If specifier and implementer share the
same understanding of knowledge representation and implementation models, the functional specifica-
tions and man-machine concepts have a better chance of being understood by the implementers.
Further, it is important for the specification team and the implementation team to have access to one
another, both during the specification preparation process and during the specification analysis and
design process, to help interpret the specifications.)

7.7.3 KI Shell's Suitability for Cleanroom

For the practices of an enterprise to be suited for support using a KI Shell-based assistant, the processes that
underlie these practices must:

1. Be well-defined, i.e., consisting of well-defined activities;

2. 1lave some precedence in the order in which they must be executed or require some synchronization
among them;

3. l)o some degce of dynamic work-allocation (i.e., based on the results of some previous activitv, create
work for some user); and

4. Require the modeling and viewing of structured information.

he processes undcrlving the (71canroom methodology do meet the above requirements. and hence are suit-
able for representation using the K I Shell. For example, the activities in Clcanrooin consist mainly of:

Sotfiware Process Inactment Ixperimnt and Demonstration Preparation 109

" Define User
" Define Project
" Circulate Completion Lists
" Sign Completion Conditions
" Receive Completion Conditions
" Allocate Personnel
" Allocate Teams
" Develop Black, State, or Clear Box or Refine a Clear Box
" Run Test Cases.

All these activities are well defined, and as such were suitable for implementation (that is, they can be imple-
mented algorithmically).

Cleanroom activities must be done in a certain order. For example, most certification activities (such as the
running of test cases) must be done only after development of an increment is complete. There are several
examples of such ordering requirements in the Cleanroom methodology.

Work allocation is a primary activity within Cleanroom. For example, Certifiers create failure reports, which
then become pieces of work to be done by the Developers, who then have to correct the code appropriately.

The information to be processed in Cleanroom has a complex structure. While black, state, and clear boxes
are just treated as text files, they must be grouped within modules, within projects, and so on.

Cleanroom is a suitable application to be supported by the KI Shell, as it (1) has well-defined activities, (2)
is rich in its synchronization and ordering requirements, and (3) has several cases of dynamic work-allocation
and a complex information structure.

110 STARS I ask IS-15 Software process 1 ools and 'I echniqucs Ivaluation Report Version 1.0

8.0 STARS IS-15 Software Representation Work

On the basis of the Software Process Management System (SPMS) prototype work performed under STARS
Task IR-23/B, IBM decided to redirect work from performing software process modeling experiments using
SPMS to examining process management architecture issues for the IBM STARS SEE and to examine how
the Software Process Management System prototype could be migrated to the IBM STARS SEE. Consider-
able process modeling has been performed in SPMS, including the process asset capture of the IEEE P10-74
software life-cycle process components. Codifying these process assets provided the basis for experimenting
with instantiating process architectures through a reuse library of process assets.

8.1 Software Process Modeling Support

This section describes an example of a system intended to provide support for the modeling of software
processes, namely the Software Process Management System (SPMS). We shall provide an overview of
SPMS, the SPMS concept of process modeling, and give a description of the features of SPMS including its
software process simulation capabilities. We shall first assess the requirements for the port of SPMS to the
IBM RISC System/6000, then discuss of the training materials developed, and finally consider the
hardware/software requirements of SPMS.

8.1.1 Software Process Management System: Overview

The prototype SPMS supports exploration and experimentation concerning some of the issues introduced in
section 2, such as defining software processes, software process enactment, process improvement and product
metrics. We believe that it will facilitate communication of a formalized process across an organization or
project. It will also support some degree of process reuse by allowing selection of a process model from a
base set of alternatives. It will also support process evolution and adaptation owing to its ability to define
model-based product and process measurements, and to collect and reason about data relative to the process
model.

The prototype SPMS meets some of the system requirements for enactment described in section 2.2.3.3.
SPMS supports to some degree most of the process model concepts needed for cnaction including products,
activities, agents, control flow, communication, decisions, long-term execution, concurrency and commuri-
cation, views, and to some degree roles, extensibility, reuse, process change, and the testing and debugging of
process enactments. The prototype SPMS does not support all of these aspects to the degree necessary to
meet the requirements found in section 2.2.3.3. It has, however, allowed experimentation and refinement of
requirements as well as the development of techniques that we believe can be utilized to fulfill these require-
ments.

The SPMS concept of software process management takes an activity-based view to modeling process that is
related to key concepts of project planning. Figure 40 on page 112 illustrates the SPMS software process
management concept.

S I ARS IS 1 5 Soflvarc Represent;ition N\ork II

Process Model = How

Project Data = What

Plan = How + What

Resources = Who

Durations + Scheduling =When

Scheduled Plan with Resources = Who, What, When, How

This Plan + monitoring methods + enaction =

Software Process Management

Figure 40. What Is Software Process Management?

8.1.1.1 SPMS Architecture

A high-level view of the SPMS system architecture is shown in Figure 41 on page 113. This figure illus-
trates SPMS as an element of the software development project software engineering environment along with
directly related project disciplines. SPMS can be viewed as a tool for interfacing among all project disci-
plines and corporate overhead functions, by including these organizational interfaces in the process models
developed and tailored for a project.

112 STARS Task IS-15 Software Process Tools and Techniques Evaluation Repor, ersion 1.0

Project Environment

BaseIProcess FS71
Coordination I E

[Project 1 onfguratn
Management Management

Risk &
Management System

Quality Reuse
Measurement System

Software Process
Management System

Nexpert
Object INexpertI

I Object
K

SPMVS
Hype~ardOracle

EardData Base

Figure 41. I igh-Leve! Architecture of SPMS.

The intended users of SPMS are project managers, process engineers, and software engineers. SPMS pro-
vides a means of collaboration among these users in a software development project. The determination of
which components of the SEE should directly interact with SPMS was based upon the SPMS concept for
modeling processes and model- and project-specific tailoring. The internal architecture of the SPMS proto-
type that was developel on IR-23i B is illustrated in Figure 42 on page 114. The specific COTS tools being
used in the SPNIS prototype are described in section 8.2 of this document.

The system architecture for SPNMS is comprises of the following system components:

1. A Control Integration Meciianism

STARS IS-15 Software Representation Work 113

pCONDt HYPOTHESIS a ndj
ct_

ACnON Mxedell Definitionmen

NEXPERT OBJECI OR ACLE Xpen

" Knowledge-Based -1 Historical Date

Conceptual Model Process Components•Monitoring Methods -Process Models
and Rules

" Component Entry and Reot
Editing

" Component Selection Process
and Model Definition Components

" Execution Constraint
Selection

" Metric Selection HYPERCAR[
" Simulation Interace , ,

Figure 42. The System Architecture for SPMS.

HyperCard provides control integration services for integrating the commercial-off-the-shelf tools for
SPMS. The HyperCard interface is directly connected to the database for the purposes of entering,
browsing, and selecting the components, constraints, or metrics for building a process model. The
HyperCard also serves as the interface for the system when it is used for simulation.

2. Classification Knowledge Modeling Tool and Method Monitoring and Execution

The expert system shell (NEXPERT Object) contains the knowledge-based representation of the process
model and the instantiated project-specific model. It also contains the methods used for monitoring the
executing process.

3. Persistant Knowledge Store

114 STARS Task IS-15 Software Process Tools and T echniques Evaluation Report Version 1.0

The ORACLE relational database contains the process components library, the process models that
have been constructed, the project-specific model, and historical data. ORACLE's role is also that of a
persistent data storage mechanism to support process enactment simulation, by maintaining process state
and history.

The arrows to and from the NEXPERT Object expert system shell represent bridges between the shell
and the other COTS tools that we have used in SPMS. These bridges allow the expert system shell to
be embedded into SPMS within the Project Environment Base prototype (software engineering environ-
ment). The shell may call out to procec --A languages such as C or call out to the relational database,
using SQL to retrieve from or update the database. The bridge to IlyperCard allows SPMS to directly
interact with the NEXPERT Object expert system shell.

NEXPERT Object provides a rich classification knowledge modeling tool, and supports object-oriented
systems development that provides full multiple inheritance. By using the NEXPERT Object product in
conjunction with the ORACLE product, we have not only many of the advantages of an object-oriented
database but also a more mature and widely available technology.

4. Project Activity Network Modeling Tool

The MicroPlanner Xpert provides functionality common to many project management systems, such as
Pert and Gantt charts. Further, MicroPlanner Xpert is employed to perform process task or activity
modeling. The activity networks are exported for use by SPMS for developing the "project/process" plan
-- the combining of process activities with the details necessary to develop effective process models. The
"project/process plan" concept is illustrated in Figure 43 on page 116.

8.1.1.2 SPMS Process Modeling Concepts

Process models and their representations must be viewed at several levels of granularity. Among these are
the entire model, named groups of tasks and their relationships, and the individual tasks themselves. To
further complicate the issue, each of these levels of granularity may be mapped to different levels of concep-
tual abstraction, depending upon the process to be modeled, the state of knowledge concerning the various
tasks within it, and the need to specify different tasks at different granularities.

SPMS is designed to be independent of the particular level of conceptual abstraction and allows the user to
specify process fragments or nodes within named groups of related process fragments and to relate these
named groups or process components into a larger model. The named process components may optionally
be deleted from the larger collection or library of components if desired. For example, some of the named
components might for represent different techniques for producing the same products. Each of the tech-
niques contained in a named process component is related to those process fragments or nodes within other
named components that require their products as inputs. If some of these techniques were not ever of
interest, then the user might delete these from the process component library or model by using the model
editor of SPMS. Other techniques might be of interest and left in the model, but the user might not wish to
specify exactly which technique was to be used on a particular product until project-specific information was
known. Parameters associated with the various techniques allows a late binding of project-specific data to
the more general model.

8.1.2 Software Process Management: Concept of Operation

Any software process management capability should support the definition, design, and continual develop-
mcnt of software processes. It is these models that will be used as "templates" for further elaborated proc-
esses for a specific project. SPNIS provides the facilities for dcveloping and describing these generic models
and instantiating them for a particular project. The instantiation includes time and resource scheduling.
SPMS also provides the mechanism for simulating these processes and replanning based on input from the
user.

S IA RS IS- 15 Software Representation Work 115

Process Model Project Data

Prototypical Specific
Tasks, Metrics,
MileStones, Quality Goals,
Products, Products to be built
Constraints,
and Data Collection Forms

A specific constrained sequence of named
Tasks,
MileStones,
Products,
Monitoring methods,
and tables to hold collected metric information.

Figure 43. Project;Process Plan Concept. Process Model + Project Data = "Project Process Plan.'

Figure 45 on page 119 shows a high-level view of the operation of SPMS. Starting at the far-left side of
Figure 45 (point 1), process and product components and constraints are created to form the basic building
blocks of the process model. These user actions are performed within the project management system,
MicroPlanner Xpert (Xpert), which results in a graphical representation of the process model. Activities (or
process tasks) are modeled in Xperl by using an Entry / Task / Validation / Exit (ETVX) style. The form
for an example SPMS process model component is illustrated in Figure 44 on page 117.

The metrics to be collected and the data collection forms to be used in collecting this data have been imple-
mented in the prototype SPMS from the "RADC Quality Framework (Technical Report (Interim) Volume
IV Software Quality Framework," < 40 > (point 2) and arc contained within a metrics database. This data-
base and the associated RADC documents provide the information necessary to select data collection forms

116 STARS Task IS-15 Software Process Tools and Iechniques [valuation Report Version 1.0

E T X

V

jN

.0 J 1 0 0 2N
N- A parallel/ |0,0 task

o,o task

A product

,First task S eco n d ta s k "103 Aaall mietn C 00

[0,0 task

Figure 44. A Process Model ComponenL

(DCFs) to be associated with validation tasks within the process model. (See point 3.) A node may also be
specified in the process model as a starting point for potential rework should the measures taken by the
validation task fail to meet desired quality goals.

The process model is then exported as an ASCII file from the project management system. (See point 4.)
The process engineer (PE) may exit the project management system.

The PE logs into SPMS and, from the process interface, imports the ASCII representation of the process
model into SPMS. This constrained and instrumented process model may be used as the basis for creating
project-specific plans (see point 7) or used as a reusable library of tailorable process components. Tailoring
may occur at two levels of granularity:

" The individual process, product, and constraint components (see point 5)

" The model level (see point 6).

The edited model may then be used to create plans.

STARS IS-15 Software Representation Work 117

Within the Project Interface, a project can be created (see point 7) within SPMS. A project represents the
combination of quality measures and software components to be constructed by the software development
process. The quality measures and their associated quality goals are selected at point 8. lhc software parts
are also associated with this project at point 8. When the project has been constructed, a plan may be
created (see point 9). Creating a plan combines the process model information with the project information
to produce the instantiated plan, knowledge bases, metric calculation methods, and tables necessary for the
execution of the plan. (The plan cannot be executed before to scheduling by the project management
system.)

The PE may tailor the plan by editing the quality goals for specific products within the software develop-
ment process. The quality goals selected at point 8 provide default values for a selected software quality
factor for all instances of products measured by that factor. The tailoring of these values at point 10 allows
the setting of higher- or lower-quality goals for specific products within the plan.

The plan may have specific graphical displays associated with it. (See point 11.) The selected graphs will be
displayed and dynamically updated during the simulated execution of the plan. The database is kept updated
by the expert system during execution, and the graphical displays are updated once for each increment of the
simulation clock. Before simulated execution, the plan must be exported to the project management system
for scheduling. An ASCII file is exported from SPMS in the format required by the project management
system, Xpert. (See point 12.)

118 S I \RS lask IS- , 5 SIt&are Pro~c' I oos and I ecdmiqucs I-xaluafio Rcport \Vci,,in 1.0

Netcics Dfinition Function

MU1uZCO Wetrcato prjjnqVojcs Reinemnttc runcton
L Mimultio

Thsunceduelniimotdinotepoemngmntyse Daprta whre theaproritedu

must eschedled Form n ths>cin aebe efrete ceue lni xotdfo h
project~ ~ ~ ~ ~ ~ ~~~~~U manaemen satm(pr)a nACIfl sepit1)

StAR IS-S Sfiwae RPructtinWr 19

The scheduled plan must be imported into SPMS through the Project Interface. At this point, execution of
this plan may be simulated. (See point 15.) The metric monitoring methods within the expert system will
request that the necessary data collection forms (DCIs) be completed as they are needed within the exe-
cuting plan. In the simulation, the values of the DCF questions will be randomly computed. The moni-
toring methods will then compare the computed values of the metrics (which are based on the answers to the
DCF questions) with the quality goals for the quality factor for the specific product being tested. If these
values are within the range of the desired goals, then execution of the task sequences that follow the vali-
dation task in the plan will continue, otherwise they cannot continue, and failure notification is issued.

If desired, those portions of the network that the process model has specified as necessary to alleviate the
failure of the validation task may be automatically created. This represents the "rework" needed to bring the
product that has failed the validation task up to the level of the quality threshold. (See point 16.) This
replanning is based upon a rework path that was specified within the process model. The impacts of new
product versions that may result from rework are also propagated through the network.

As a result of replanning, it is necessary to reschedule the network of tasks. This requires moving through
points 12, 13, and 14 before continuing with the execution of the plan.

8.1.2.1 Software Process Management System: Process Modeling Concept

Because the prototype SPMS utilizes generic process models to produce project-specific process models
(plans), it is important to clearly distinguish between the two kinds of process models. A process model does
not represent any specific software component or system; it is the sequence of tasks, milestones, constraints,
and products necessary to produce a prototypical single instance of each of the types of software components
that are represei~ted within the model. This is in contrast to an instantiated project-specific process model,
which usually contains numerous specitic named and interrelated instances of the software components to be
produced by a software development process. This is usually called a plan.

A plan may have resources, durations, scheduled start and finish dates, cost information, and work break-
down structures associated with the named tasks and products within the plan. Process models normally
lack this detailed elaboration but contain information concerning the development mode of the tasks, the
architectural level of the products that the tasks produce, the data collection requirements of the metrics
associated with particular tasks, and starting points for potential rework within the model.

Process models are used to provide the framework for producing plans that may be replicated. Process
models may be viewed as a collection of process components or process model fragments. The process
model contains these components or fragments and their relationships. Some writers refer to the compo-
nents as the process model and the view which includes the relationships between these components as
process architecture. It is important to differentiate between non-specific process mr' iels which represent
prototypical instances of tasks and products, and instantiated ones ' hich represent an actual software devel-
opment process.

A plan is the baseline for monitoring progess of a specific software development project. The tasks, mile-
stones, and products within both process models and plans are represented within an activity or node
network in SPMS. This network is entered into the system via traditional project liianageeilt techniques.

The nodc typcs .scd to support process modeling, that are currently supported in the prototype SPIMS arc:

" "T'ask:

The basic component of an activity or node process model. It signifies that sonlthill is going to
happen.

• Milestone:

A milestone is a special node used to highilight important events in a pmrc ; model.

120 SIARS a~k IS-15 Sofi,.arc Protcs Iook and I tduiiques I .%ali;iti RcpOrt \crsiorI 1.0

• Interface:

An interface node is a special node used to provide a logical link between two or more named groups of
process components. An interface node is used to represent a product in SPMS.

" Reverse (Or):

A reverse node is a special node that allows a task to start as soon as any of its predecessors is complete
as opposed to the normal logic in which an operation may only start when all of its predecessors are
complete. It represents an OR condition rather than the usual AND condition in SPMS.

These symbols are illustrated in Figure 46 on page 122.

SI A RS IS- 15 Software R,'rcsentation \ork 121

L Task:

The basic component of a process model.

D o
" Milestone:

A special node used to highlight important
events in a process model.

* Interface:

S A special node used to link subnetworks
in the process model. Represents a
product in the SPMS.

* Reverse: (OR)

A special node used which allows the
successor to start when any predecessor is
complete rather than when al/predecessors
are complete.

Figure 46. Process Activity Modeling Symbols.

These nodes nay be linked into an activitv network by the following constraint types:

• Finish to Start:

A Finish to Start link is the most common link. It specifies that a task cannot start until its predecessor
is completed.

• Finish to Finish:

122 STARS Task IS-I 5 Software Process Tools and Techniques Evaluation Report Version 1.0

A Finish to Finish link signifies that the completion of a task is in part determined by the completion of
its successor task.

" Start to Finish:

A Start to Finish link specifies that a task cannot finish until its predecessor starts.

• Start to Start:

A Start to Start link specifies that two tasks may start together.

t Iammock:

A Hammock link calculates it own duration as the elapsed time between its start node and its ending
node. Hammocks may have resources and are used to summarize parts of a process model network.

These symbols are illustrated in Figure 47 on page 124.

S I ARS IS-I 5 Soft\\are Representation \Vork 123

Links

From To

Finish-Start: When
"From" Finishes, "To"
Starts.

Finish-Finish

Finish-Finish: When
"From" Finishes, "To"
Finishes.

Start-Start

Start-Start: When
"From" Starts, "To"
Starts.

Start-Frish

Start-Finish: When
"From" Starts, "To"
Finishes.

Hamnock

Hammock: Measures
the duration of the
critical path between
its nodes

Figure 47. Process Activity Links.

Interface nodes are used to represent products in SP.MS. Hammock links connect nodes that represent the
starting point and finishing point of some development phase. The duration of this link is the sum of dura-
tions of all links and nodes between the two points. As such, Hammock links are used to represent develop-
ment phases. The activity network may include coarse- and fine-grained process components within the same
model. The coarse-grained components are named subnetworks of activities. These may be hierarchically
ordered within SPMS. The fie-grained components are specified within the coarse-grained components and

124 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

consist of the individual elements of the activity subnetwork. Both the coarse- and fine-grained process com-
ponents may be edited as discussed in section 7.1.2. Figure 48 on page 125 illustrates an example of process
expansion in a SPMS activity model, where the details of the aspect of process are describes at a finer grain.
The subnetworks are linked via interface nodes (products in SPMS) among the coarse-grained components
to form the complete process model.

Process component "A"

Process component "B"

Some Possibilities:

Process component "A" might be at the SYSTEM level.
Process component "B" might be at the CSCI level.
"B" might be considered "Part of" "A"

Process components "A" and "B" might be at the same
level and "B" specify greater detail than other portions
of "A". "B" might be considered "Part of" "A"

How do you want to view parts In the model editor?

Figure 48. Process Granularity ' Expansion Concept This figure illustrates an example of process expansion in a
SPMS activity model, where 'process component A' and 'process component B' are at the same architec-
tural level, e.g., CSCI level. Process "B' might be a finer grained expansion of a process represented in
"process component A.-

The process components are parameterized to indicate the development mode and architectural granularity
of the particular component. For example, a process component may be specific to a sequence of proto-
typing or reuse activities. This same component might operate on a subsystem (CSCI) level software compo-

STARS IS-15 Software Representation Work 125

nent. Each process component within the model contains values for these parameters. The user provides
project-specific data indicating the name, architectural level, development mode, and part of relationship of a
software component to be built by the software development process to the SPMS. This project-specific
information is used to determine which portions of the parameterized process model must be instantiated
into a project-specific plan.

Process models in SPMS may also include references to a process measurement model. The measurement
model is used to provide data collection points within the process model so that project-specific plans that
are generated using the process model are automatically instrumented to determine the success or failure of
the process at those data collection points.

If a process component has failed to meet the criteria specified by the measurement model, then the user is
given the option of replanning. This replanning supports rework activities by cloning user-specified portions
of the activity network. The effects of rework are propagated through the project plan by creating new ver-
sions of previously created products.

Three scenarios are supported in the prototype SPMS. The newly created version of a product may be
needed by tasks that have not yet started, by tasks that may be in progress, or by tasks that have already
been completed. In the case of the task that has not yet begun, the new product version replaces the prior
version of the product as the required input to the task. In the case where the new version is needed by an
executing task, SPMS adds the new version as an input but does not remove the old product version. The
individuals responsible for executing the task should be informed of the new product version. This is pos-
sible in SPMS because data on the resources and organizations to which they belong are kept in SPMS. In
the case of the task that has been completed, but work needs to be performed on a new version of the
product, the cloning of the activity network begins again with this task and follows the network of completed
tasks within the process component. This may result in the creation of new product versions that are also
propagated throughout the process model.

8.1.2.2 Project-Specific Tailoring

The process model may be tailored for use on a specific project in several ways. Elements of the coarse
grained process component hierarchy may be selected for inclusion in a new process model. These selections
may represent different approaches to producing the same products, such as object-oriented versus top-down
design. The individual fine-grained process, product, and constraint components may also be tailored
through an SQL-based interface. The product producer and product consumer activites of process compo-
nents within the model may also be reviewed and edited.

The effect of the process model on the project-specific plan is also tailored by providing the development
mode and architectural level parameters to SPMS when specifying those software components that are to be
developed according to the process model. Those process model components that match both the architec-
tural level and the development mode of the software components to be developed are instantiated. All
other process components within the model are ignored in producing the plan.

The metrics to be computed during simulation of the plan are also selected, and the threshold values to be
used as a criteria for success may be tailored. As a result of tifs tailoring, specific calculation methods for
the expert system shell are produced.

8.1.2.3 Project Scheduling and Resource Allocation

The instantiatcd plan that is produced by the SPMS prototype does not include duration data for the tasks
that have been created. This information is nccessar before scheduling may he pcrfomced in the project
managerment system. Resources must also be assimed to tasks before resource leveling algorithns may be
applied. These user actions are done within the project management system. In the prolotype SP.IS this is
done by exporting an ASCII file to and from the project managemcnl system.

126 S I .\ RS lask IS- 15 Software Proccss Ioos and I echuiqucs I ahluation Rcport Version I.1

SPMS exports information relevant to the instantiated plan, such as the node types, their relationships with
other nodes, their named descriptions and, resources. The amount of information exported depends upon
whether the plan has been previously scheduled, resource leveled, and simulated. If it has been simulated, it
will contain resource allocations, costs, work breakdown structure, start and finish dates, scheduled dates, etc.
This updates information that may already exist within the project management system. Conversely, updates
within the project management system are available to be imported into SPMS.

8.1.2.4 Simulation

The scheduled project-specific plan contains all of the data that were exported to the project management
system by SPMS with the scheduled start and finish dates and resources updated by the scheduling and
resource allocation algorithms. This information is imported into SPMS. The plan includes scheduled start
and finish dates that are based upon the task durations which were entered by the user. The durations of
randomly selected tasks may be randomized by a user selected percentage. This can add a degree of realism
to the simulation by letting some tasks finish early and other tasks take longer than planned to complete.
During simulation, the execution of the plan may be constrained to follow the specified start and finish times
or the user may allow tasks to begin as soon as their input constraints are satisfied.

The simulator may be used as a means of validating process models, the low-level metric methods that are
produced to support monitoring, and the process-level metrics that may be graphically displayed during the
simulation.

8.1.2.5 Adaptation - Replan or Remodel

One consequence of the simulation of the scheduled project-specific plan may be the failure of some process
components to meet the validation criteria that have been specified in the measurement model. This may
indicate unrealistic quality goals for some products. These goals may be tailored within SPMS. The failure
may also indicate the need to perform rework on the product. SPMS supports automatic replanning by
cloning user-specified portions of the project-specific plan. The cloned sections of the activity network that
are required to perform the rework are automatically spliced into the activity network. Rescheduling of the
plan is then likely to be necessary to assess the schedule impact of the new tasks that must be performed.

Another consequence of the execution of the simulation could be the realization that the process model is
inadequate to support the proposed software development project. Problem areas within the model may be
addressed by the user in an iterative cycle of model refinement, creation of new plans, and simulation of
these plans until the user is satisfied that the process model will support the user's requirements.

8.2 SPMS: Port Assessment to the IBM RISC SystemI6000

SPMS integrates many commercial tools to provide a robust software process management capability. The
following sections provide a description of these tools, their current contribution to SPMS and the issues
needed to be addressed to port the current functionality to the IBM RISC System/6000.

SPMS prototype was developed and delivered by Lockheed Software Technology Center in Austin, Texas,
on an Apple Macintosh system. The prototype is an integated suite of commercial off-the-shelf tools
designed to allow process definition and enactment during process project planning. SPNIS combines an
expert system, a relational database rianagemcnt system (RDIINIS), hypertext interface technology and
project management sytemn capabilities (see iFigure 49 on page 12,). The result is a user-fiiendlv tool that
allows a user to define a process model, to instantiate the model for a specific software development project,
and to simulate execution of the model on the basis of a set of softwwc quality mcrics.

S 1 \ RS IS 15 So!fware Represcrilatioi Work 127

The purpose of this section is to examine possible approaches for porting the prototype to the IBM RISC
System/6000. The role of each tool presently in the prototype will be identified, possibilities of direct porting
will be discussed, and possible alternative tools for the IBM version will be presented.

* Knowledge-Based
Conceptual Model -Historical Data

" Monitoring Methods • Process Components
and Rules • Process Modelsr c 1 r

C'Process Prcs Project
FOR TR A N , L=, Reasoning - _Model sMgt.m

Ad Component DaaBs yse

" Component Entry and

" Component Selection _R - -- t
and Model Definition

____Use

" Execution Constraint User _

Selection Interface
* Metric Selection
" Simulation Interface

Figure 49. SPNIS Architecture.

128 STARS Task IS-I5 Software Process Tools and Techniques Evaluation Report Version 1.0

8.2.1 Process Model Database

The ORACLE relational database management system is used to provide the repository for process- and
project-specific information within SPMS. The language provided by ORACLE, SQL, provides the
finctionality for retrieving information from the database by performing calculations on that data and
dynamically creating objects during execution.

The functionality provided by ORACLE (including SQL) must be present in the ported version. RDBMS
capabilities are at the core of SPMS, and any implementation would require this functionality. There are
several process management database options:

1. Purchase ORACLE for the IBM RISC System!6000 and port "directly".

ORACLE is available today on the IBM platform. Cost is approximately $16,000 to support up to 16
users. This approach seems to present the least risk we are familiar with the functionality of ORACLE
and are confident that the tool provides similar functional capabilities found in the Macintosh implemen-
tation of ORACLE. Learning time will be required in order to understand the IBM RISC System/6000
version of the ORACLE products.

2. Purchase another RDBMS system and 'redevelop' on the IBM RISC System/6000.

Currently Informix, Sybase, Ingres, and several other RDBMSs are available on the IBM RISC
System/6000 and may provide better functionality for SPMS. We would need to investigate available
products to examine their appplicability for use in SPMS design and determine the cost of an alternate
system. Another important factor to consider is the popularity of the RDBMS.

3. Use DBMS provided within some development/execution shell.

If IBM adopts some standard environment for use within the SEE that provides a DBMS capability,
SPMS should investigate using this functionality to provide seamless integration within the SEE. Again,
we would need to investigate the capabilities provided within the environment and design/develop SPMS
accordingly.

8.2.2 Process Reasoning System

NEXPERT Object is an expert system shell that allows users to move from traditional data processing to
knowledge processing, that permits an application to form conclusions from data and take direct action.
NEXPERT Object provides a natural way of handling tasks that require problem solving or reasoning.
Compared with other development tools, NEXPERT Object makes it easier to model the problem and sol-
ution space and to capture and reason with knowledge. As a result, problems can be solved that would have
been very difficult with conventional languages (such as Ada and C), with the result that design, develop-
ment, and maintenance are faster and easier.

Within the SPMS prototype, NEXPERT Object provides functionality in three major areas. First,
NEXPERT allows an object oriented representation of processes and products. Classes (of objects) which
have certain characteristics are defined. When an object of a certain class is created, it inherits all class char-
acteristics. This includes all methods (operations) associated with the class as well as attributes and relation-
ships to other classes. Such inheritance alleviates much programming by developers (initialization and loLc)
and provides much functionality to the tool with only minimal programming. Second, objects representing
processes and products within SPMS must he dynamically created and deleted to model the very dynamic
nature of the software dcvelopment process. Ihe mcmor3 management of these dynamic objects takes place
within the expert system shell relieving developers of time-consuming programming. Finally, NFXPIFRT
Object is used during process enactment as a shell from which to run the simulation. Rules within
NFXPFR[Object begin the simulation, decrease the time during task execution, start and finish tasks, cal-
culate metrics for validation tasks, and detemiine whether tasks pass or fail quality checks.

S .\RS IS- 15 Software Representation \W"ork 129

As with ORACLE, the functionality provided by NEXPERT Object is central to the functionality provided
by SPMS. While it may be possible to replicate the functionality provided by NEXPERT Object, it is
perhaps the only readily available expert system shell that provides multiple inheritance and object-oriented
development capabilities. Both of these functions contribute heavily to the ability to perform rapid systems
development as well as to develop a robust IBM RISC System/6000 SPNIS prototype. There are several
approaches to porting this functionality to the IBM RISC System/6000.

I. Purchase NEXPERT Object for the IBM RISC System/6000 and port "directly."

NEXPERT Object is available today on the IBM RISC System/6000 platform at a cost of $12,000.
The runtime version for the IBM RISC System/6000 is $2,000. Its functionality is known and obviously
supports all present capabilities. In the initial prototype developed by Lockheed, NEXPERT Object is
not used as completely as it could be. Currently, diagnostics are not tied directly to the expert system.
By exploiting the expert systems capabilities of NEXPERT object, intelligent "help" could be provided
to diagnose SPMS problems. SPMS on the IBM platform should use NEXPERT Object heavily for
classification knowledge modeling and process monitoring.

2. Remove expert system capabilities and replicate functionality in conventional programming language.

While this may be a possible solution, its feasibility is questionable in the current time frame. As men-
tioned before, expert systems provide rapid system development capabilities and alleviate much of the
programming required for control logic. This choice would limit the extensibility of SPMS in terms of
classification and diagnosis of process related problems.

3. Acquii' requred functionality from another tool within the SEE.

It may be possible to remove NEXPERT Object from SPMS and redesign it to incorporate new tech-
nology. Detailed trade studies of any potential alternatives would be necessary before making such a
drastic decision.

8.2.3 User Interface

HyperCard is an application provided on Apple Macintosh systems. It is a personal toolkit with which to
create applications for gathering, organizing, presenting, searching, or customizing information. It provides
tools such as buttons, cards, stacks of cards, and icons to rapidly develop these applications.

SPMS used HyperCard 2.0 to develop the user interface to the tool. IyperCard provides intuitive methods
for getting around within SPMS. Its point and click mechanism is easy to learn. I lowever, Il yperCard is
only available on the Macintosh.

Certainly any incarnation of SPMS on the IBM platform will have to have a user interface. Just what that
user interface should look like and what functionality it should provide are not so certain. There are many
possibilities, several which are enumerated here.

I. Write a user interface package using the X windowing system.

While this is a possible approach, there are several already available on the IBM RISC System/6000 that
would provide all functionality needed.

2. Usc Motif for the user interface.

.Motif is a standard windowing package provided on the IBM RISC System, 6000. For dcvcloping an
interface that \will remain on the IBM platform, Motif is probably sufficient.

3. Devclop the user interface using a product that makes the interface portable among window\ing systems.
XVT is a commercially available product that allows a user to build interfaces that are portable among
such widely used windowing systems as Microsoft Windows, Motif, Macintosh Windows, Presentation
.Manager, and several character screens. XVT is available today for 1I13N RISC System 6000 systems at
a cost of $3,495. Interfaces built in XVi could be portable among many s\ stems.

130 SI ARS I ask IS-15 Soth\arc Process lools and techniques i\atiation Report Version I.)

A product similar to XVT is UIM/X developed by Visual Edge. UIM/X is an interactive tool that
allows developers to create OSF/Motif user interfaces. UIM/X's interactive development environment
improves productivity in two ways:

a. It enables developers to draw their interfaces instead of having to hand code them; and

b. It frees application developers from time-consuming compile, link, and debug cycles owing to its
built-in C interpreter. UIM/X is not currently available on the IBM RISC System/6000, but there a
possibility that it will be made commercially available for use in an acceptable time frame.

4. Combine options 1, 2, and 3.

8.2.4 COTS Project Management System

MicroPlanner Xpert is a project management system (PMS) that provides all traditional capabilities
including scheduling resources, costing, task scheduling, etc. The main reason for choosing MicroPlanner
Xpert was that it readily exports data needed by SPMS. It would be preferable to have a PMS that was
designed to be embedded rather than as a stand-alone tool and that utilized a relational database as its infor-
mation storage rather than proprietary data structures that cannot be programatically accessed.

MicroPlanner exports, in a textual form, all information needed by SPMS to- create objects that represent
tasks, products, and relationships among objects. Also, SPMS can export the information back into
MicroPlanner when changes are to be made to the project schedule. The integration between SPMS and the
project management system is awkward and time-consuming. While the transformation of information
between the two tools is automatic, it does take a great deal of time to complete. A more elegant solution
will need to be designed and implemented in a final version of the tool. MicroPlanner Xpert was chosen as
the project management system for the prototype, as it was the only tool readily available that exported all
information needed by NEXPERT Object to create the corresponding objects.

Project management capabilities will certainly be needed in the version on the IBM platform. Complex
resource and personnel scheduling algorithms are provided by any good PMS and should not have to be
developed during the port to IBM equipment. We hope that a more seamless integration between SPMS
and the PMS can be implemented. The approaches to be considered in the PMS 'Iea are as follows:

1. Purchase a PMS similar to MicroPlanner for IBM RISC System/6000.

MicroPlanner is not available today for the IBM RISC System/6000. We plan to examine the XPM
project management system being encapsulated on IP Softbench. Given that this is not an acceptable
alternative, a brief trade study of similar products would have to be undertaken to see whether a suitable
alternate PMS is available.

2. Purchase another PMS that provides a callable interface or is built on SQL.

If a PMS provided a callable interface to its functionality, the user would never get the feeling of
leaving" SPMS and entering the project management system. All project management interaction could
be done from within SPMS. One step further is to look for a project management system that is built
on SQL so that the data used by the project management system is the same data that is created and
used within SPMS. That is, all project management/process management data is stored in the same

database.

3. Write our own project management system.

Althoueh there are many commercially available sx-stcms, we may be able to write only the portions of a
PMS that are needed to support SPMS. This would allow us to seamlessly integrate the P.MS functions
as SPNIS, and the PMS would be driven by the same data (as opposed to two sets supported by stand-
alone systems). The complex algorithms for scheduling may be available commercially, and simple draw
packages are available. 'iis approach would provide the most flexibility but may not bc economically
or technically feasible.

S I ARS IS-15 Softare Representation Work 131

4. Devise a scheme for using any commercially available PMS.

If possible, the steps for including data from any PMS into SPMS could be detailed and provided to
those users with in-house capabilities. Certain assumptions would be made of the PMS, such as avail-
ability of information and some type of exporting capability. SPMS would include one standard PMS
and the instructions for integrating with another. This approach would make the tool attractive to
organizations with thcir own PMS.

8.2.5 Conclusions

It may be decided that SPMS should include more functionality than the original prototype. As this is a
port assessment section, those additional capabilities are only discussed briefly in the following paragraphs.

1. Exporting Process and Project Information to Other Project Monitoring Tool(s).

Tools such as EAST and KI Shell provide project guidance and monitoring for all levels of users. These
tools provide process adherence, are commercially available, and usually provide many capabilities that
members of a software project management/development team will need. Integration of the front-end
process and project planning data from SPMS with actual process execution could provide users with a
complete system for defining processes, implementing plans on those processes, monitoring the develop-
ment process, and finally developing, testing and maintaining the software that they were developing.

2. Providing Coordination Technology.

One additional capability might be the inclusion of tools and/or methodologies providing the
functionality for a group of users of SPMS to participate in ongoing discussions regarding the process or
project. At what level within the SPMS design this might be of most importance is not clear.

3. Including Resources in Simulation and Monitoring Capability.

Currently, the process simulation provided in SPMS assumes unlimited resources (i.e., all equipment
needed for a certain task is available at any given time). To truly model software development, resource
information must be included in the simulation.

4. Providing Costing Information.

In the current prototype the Micro Planner project management system exports cost information associ-
ated with each resource (personnel and equipment). This information is currently not used in the SPMS
prototype but should be included so that costs can be recalculated during simulation when plans deviate
from the original schedule. This information will also be useful in estimating the impact of replanning
and rework.

5. Integrating with a Software Engineering Environment.

If a SEE framework is selected on which SPMS must reside which enforces certain interface or develop-
ment approaches, SPMS will be integrated within this environment.

6. Integrating COCOMO Tools into the Instantiation Processing.

Integrating COCOMIO tools in the SEE project management tools would provide some level of auto-
matic veneration of duration estimates, cost estimates, and resource scheduling.

7. Using Expert Knowvledge and Statistical Information to Create I leuristic Rules.

Nextra. a knowledge acquisition tool from Neuron Data, will gcenerate classification rules that can form
th, 'asis of more advanced process monitoning. This capability is currently only aailable on the Apple
Macintosh.

8. Intcate Process Model. Metric Model, and l)ata Collection Model Tools into the Softwrare Engineering
Fnvironmcnt.

132 S ..\RS I ask IS-15 Software Process I ools and I echniques I\aluati,n Rcport Vcrion I]

Further research is needed to understand the relationship between metrics and software development
processes. Friendly interfaces are needed to add metrics pertaining to the software development proccss
as well as consistency checking to assure that all needed information is acquired for metric calculations.

All the above approaches and altematives are based on the final copy of the SPMS system delivered by
Lockheed on June 6, 1991. We assume that the SEE is not enforcing the use of any specific commercial
tools (such as a particular DBMS or project management tool). Finally, we assume that no development
shell has been prescribed. If any of the above assumptions prove false, then the approaches described above
may change.

8.2.6 SPMS: Port Plan for Porting SPMS to the IBM RISC System/6000

The purpose of this section is to provide an initial schedule for porting the Software Process Management
System to an IBM RISC System/6000. A surmnary of candidate trade options is provided in Figure 50 on
page 134.

S I.A RS IS-15 Soft,are Recprcscntation Work 133

Estimated
POSIX/AIX HP SoftBench L/M

Diet aabltyenew Interface e HP SoftBench o 21? i/rn (Posix)
DirctCaabliya remote training 9 24? I/rn HP

Port MicroPlanner a encapsulating SoftBench
XPert PMS4 SPMs

Re-Architect
Current Product

Replace o trade studies e POSIX/AIX Issues e 6? i/rn (Posix)
0 PMS 9 new prns and HP SoftBench e 8? I/rn HP

interface training SoftBench

P Write own e trade studies to o POSIX/AIX Issues a 9-12? Vrn
PMS determine make and HP SoftBench (Posix)

t 0buytraining o 9-20? I/rn HP
functionality or nebItefy e SoftBench

i elc trade studies e POSIX/AIX issues *6-24? I/rn
Relaefor new expert and HP SoftBench (Posix)

Nexpert system training 9 6-26? I/rn HP
0 e new Interfaces Soft~ench

Write own e trade studies to e POSWXAIX issues o 18-36? i/rn
n Nxetdetermine make or and HP SoftBench (posix)

Nepet uy training o 18-38? I/rn HP

s Functionality *new Interfaces Soft~ench

Figure 50. Candidate Trade Options for SPMIS Port.

134 STARS Task IS-15 Software Process Tools arnd Techniques Evaluation Report Version 1.0

8.2.7 Schedule

Figure 51 through Figure 53 describe an initial schedule for porting the SPMS capability to an IBM RISC
System/6000. The task entitled "Design, Develop, Port SPMS Software to IBM RISC System/6000" is the
actual porting task. The other tasks ide, .ified address developing project documentation and training mate-
rials, attending meetings, and conducting SPMS/R training sessions.

The task "Design, Develop, Port SPMS Software to IBM RISC System/6000" will incorporate many sub-
tasks. Those tasks are curmmerated here:

1. Trade studies on state-of-the-art commercially available tools for inclusion into SPMS.

As described earlier, SPMS combines several commercial off-the-shelf tools. Initial prototype develop-
ment integrated a database management system, an expert system, and a project management system.
To determine whether this suite of tools is the way we should continue must be addressed in the init;A
stages of the port. The following chart represents options available and issues that must be addressed
when developing the final plan for the port. These options are elaborated in section 9.1 of this report.

2. Training on the IBM RISC System/6000.

There will be some learning time when the IBM RISC System/6000 is installed. As AIX is essentially
UNIX, learning time should be negligible.

3. Developing new SPMS/R design.

At the very simplest level (porting directly all current technologies incorporated into SPMS), the tool
will have to be redesigned somewhat when a new interface is introduced. The prototype version uses a
HyperCard interface that is not available on other platforms. In the more likely case that radical rede-
sign must take place (consider inclusion of such tools as KI Shell or HP Softbench), the redesign task
will be considerably longer. Incorporating better technologies will help in the actual development, and
the added time spent in design will be saved during coding. It may also be determined that additional
features should be included in the design to provide a more robust, usable system.

4. Porting applicable portions to the IBM platform.

The portions that are identified as "portable" will be moved.

5. Developing SPMS/R on IBM RISC System/6000.

On the basis of technical discussions with the SPMS developers, STARS personnel, and interested third-
party vendors, we believe that the correct choice for initial port is to directly port the SPMS capability as a
stand-alone tool hosted on AIX. This will allow functionality in a relatively short time frame on the IBM
platform. Having the tool available for beta testing quickly will provide valuable feedback for inclusion in
the next version. There are still many questions that must be addressed before a robust capability that com-
bines KI Shell, SPMS, and 11P Softbench functionality can be designed and implemented. These issues are
discussed in detail in section 9.1 of the Software Process Tools and Techniques Evaluation Report.

8.3 SPMS Prototype System User Training

"the SEI Process Group has issucd a requcst to use SPMS to support their software process modeling work.
To gain valuable knowledge from the use of the SPNIS evaluation prototype, IBM provided S1 \ith a
training class in the use of the SI)MS prototype. Support of the use of the SIMS evaluation prototype is
planned, at a limited level, through the STARS "I" increment.

S IARS IS-15 Sof twarc Representation Work 135

.0

0i'- _: M

ol im C0 CP N3 01

O 0 0 0 0 .

C4 CO "-3

a, o o
CO 06 d, 0) 0))0

1 I o ; 17-7 -

_~V C.= ,-, C4= = .=
IhIM - -- -"- = - ">- - -z " - C.

t m CO 0m (B (D
CICC I q"

Cr * aQ N CO 4 a S

Fiue I.Sl Por an (l of 3).it 0 0

E E V
a. 1

8 C0
9 C

E ~0 0 C3IL a aa r. 0
-C 0 C rgO C

.2 0 . 0
8.- 0W .1 1_I 0 CC .2 Ag 0

C2 0 Cj OC .2C. C C .j

_I. OW OC/ OW O W OW

Figur 51. CL\1 Por P-a (1. oM 3)

136~~~~~~~~~~~~~~~~~~C. STR akI-SSfwaePoesTosad ehiusEautonRpr eso .

m4 1cm cq C?-.-

-~ V- -

0 c

q 0* '-L C CL Cd C C CL q d v -O

c a 0*0

y.- 1.2; Z d

- in c 0 - - r c-C

8* * or- 0* c * 0C .2 8
'- 00

rr Q Z 2 . CS 9
05~ ~~ c~ 10- c 1 i h

- L -a -2 -- ,

0* c

8 Ui '- aS ~ 5 2
L< c CS " E1 f 01<

Fiue5.SNS otPa 2o 3.t~c

SA, RS IS ~ - 5Sfwr ersnainW r 3

C P

0)
M-

C en r f *. (

0 0

N N

C - m fl - - - S

Z Ura E --a

C_ 0-i

Figure 53. SPNMS Port Plan (3 of 3).

138 STA RS Task IS-I15 Software Process Tools and Techniques [valuation Report Version 1.0

A training course has been designed to instruct users of SPMS. The course is set up to run for one-and-one-
half days and gives students opportunity to build a process model, tailor the model, create a plan from the
model, and finally simulate the plan. The following section describes course content and handouts.

8.3.1 SPMS Training Materials and Discussion

On the first day of the training class, students are introduced to SPMS, given background on the terminology
to be used, a discussion of process models and project plans, and introduced to building a model by using
the graphical representation facility. Next, the user will import this model into SPMS and tailor it according
to his or her personal preference. Finally, the user will create a project plan based on his or her modified
model, schedule the plan, and simulate plan execution.

On the second day of class, students will validate tasks in the plan, and on the basis of the outcome of
validation may rework the model or project plan. More complex models will be introduced, and the pre-
vious steps repeated. The class will close with discussion and questions. The class will perform six exercises
on SPMS.

The class will be given a 'generic' process model to input. This example is based on a draft ISO standard
for softwaie life cycle processes. The hardware and software needed for the class are identified in the fol-
lowing section.

8.3.2 SPMS Evaluation Prototype: Hardware/Software Requirements

The purpose of this section is to provide the hardware and software requirements for installing the SPMS
system evaluation prototype. An understanding of how to use a Macintosh computer is assumed as well as
a knowledge of the components of the SPMS system. These components are the ORACLE RDMBS,
NEXPERT Object expert system shell, HyperCard, and MicroPlanner Xpert.

8.3.2.1 Hardware Requirements

All of the components of this system are capable of running on most Macintosh computer systems (from the
Macintosh Plus to the Macintosh Ilfx). The only limiting factors affecting the decision upon which com-
puter system to select for the installation of the SPMS software are the amount of memory in the computer
system, the amount of hard disk space that is available to the computer, and the performance capability of
the computer selected.

The SPN1S system needs approximately 9 megabytes of RAM to execute the plan provided with the system
(Plan-1). This plan contains 75 products, 240 tasks or milestones, and 448 constraint relations. A larger plan
would need more memory. The hard disk on which the SPMS system is placed will need 6 megabytes of
storage for the software to be installed. ORACLE's disk partition should be expanded an additional 10
megabytes (20,480 partition units) - not including the 5 megabytes needed for ORACLE itself, which brings
the total up to 15 megabytes of storage for ORACLE. The 10 megabytes of expansion will provide suffi-
cient room to load and work with the database tables and build some new models and plans. Finally, plan
for an additional megabyte of storage for NEXPERT's NDL interface. This provides a tota! of 22 mega-
bytes of hard disk storage for the SPMS system (6 for SPMS, 1s for ORACLE, I for NEXPERT).

The final factor to consider when deciding what type of Macintosh computer system on which to install the
SPNIS system is the system performance required. SPMS was developed on Macintosh Ilfx computers. \with
160MB of hard disk, 20 megabytes of RAM, and two monitors - a 21" two-page monochrome and a 13"
RGB monitor. Theoretically, each of the components of the SINIS system (IINperCard, NIEX PERT,
ORACI.., and Microplanner) will run on a Macintosh Plus; therefore, providing the requirements stated
previously are met, SPMS should run on a Macintosh Plus. Performance requirements must be addressed
when considering that the SI'MS system is reasonable when execuling on a Macintosh llfx. It is recom-
rhended that a Macintosh II class computer system (Macintosh II. lix, si, flex, ilci. llfx) be selected, to be

S I-A RS IS-IS Software Representation Work 139

accompanied by a large monitor (19" or larger or multiple monitors). Use of a smaller screen will result in

poor display performance and display jittering, which makes small display use cumbersome and inefficient.

8.3.2.2 Software Requirements

The SPMS system requires ORACLE for the Macintosh v1.2, NEXPERT v2.OB, and Microplanner Xpert
vi.0.4. Development started with system v6.0.3 and finished with System v7.0. The only system version
requirement comes from the dependencies of the components of the SPMS system (HyperCard, etc.).

8.3.2.3 Installation of the SPMS System

The SPMS Evaluation Prototype system is distributed on 7 diskettes. They are SPMS-I, SPMS-2, SPMS-3,
SPMS-4, SPMS-5, SPMS-6, and NDLClient "Execute' Stack. This software can be installed anywhere on
the computer system's hard disk, as long as the hierarchical structure illustrated in Figure 54 is observed.

SPMS
9 items 130.8 MB in disk 23.3 MB available

Nam*e Size Kind Last Modified

C3 Execute Plan 403K folder Thu, Mag 2, 1991,3"24 AM
DHeaders 23K folder Sat, Apr 20, 1991,3:10 AM
C DModels 773K folder Sun, Apr28,1991,2:31 AM
D SPMSstack 805K HYperCarddocument Wed, Ma I, 1991,5:23 AM
C" Stacks 815K folder Sat, Apr27, 1991,4Z3 AM

' 3Xprt 1,283K folder Thu, MAY 2, 1991, 2-51 AM
D Exports from SPMS 103K folder Wed, Apr 24, 1991, 9:57 PM

R IF 0 Exports from XPERT 1,180K folder Sun, Apr 28, 1991, 1:33 AM

Figure 54. Hierarchical Structure of SPMS Folder.

To begin, create a folder on the computer system's hard disk and provide it an acceptable name. In
Figure 54, it is named 'SPMS" (the name of the window). The SPMS system does not depend upon the
name of this folder, but it does depend upon the naming and placement of the folders within the SPMS
folder. Disks SPMS-I and SPMS-2 contain files that are exports from ORACLE. These files, named
spms.dmp. 1 through spms.dmp.9, need to be imported into ORACLE by using the Import card for the
System Stack that was provided with ORACLE. Before the export files are imported, replace the init.ora in

140 STARS Task IS-I 5 Software Process Tools and Techniques Evaluation Report Version 1.0

the Drivers folder of the ORACLE home folder with the init.ora provided on disk SPMS-2. This file adjusts
some of the default system variables so that SPMS's tables will load into and run under ORACLE.

Before executing the SPMS system, a folder must be allocated for SPMS.

The location of the files shown in Figure 54 are as follows:

" The SPMS stack and ieaders folder are located on disk SPMS-2.

• Disk SPMS-3 contains the Execute Plan and Stacks folder.

• The folder Models resides on disk SPMS-4.

* Because of the size of the folders contained within the Xpert folder - Exports from SPMS and Exports
from XPERT - the Xpert folder is divided between disk SPMS-4 and SPMS-5.

A folder must be created within the SPMS home folder with the name Xpert. All exports from the SPMS
folder will be placed in the Xpert folder. The exports from the SPMS folder are contained in the folder
Xpert.part. 1 on disk SPMS-4. Also, the folder Exports from XPERT needs to be placed with the Xpert
folder. It is located on disk SPMS-5 in the folder Xpert.part.2. The last two disks contain additional stacks
that are optional to install but are not needed to run the SPMS system. The disk SPMS-6 contains stacks
that permit access to the metrics functionality of the SPMS system directly. -Briefly, the stacks on this disk
are the

- Generator stack, which allows the generation of the ORACLE tables used to hold metrics data and for
entering the structure of the project upon which ' he metric measurements will be performed;

. Software quality stack, which gives access to the questions used to collect data for the metrics; and

- Calculator stack, which will allow the calculation of selected metrics.

The disk NDLClient "Execute" stack contains an alternative version of the stack used to execute a plan.
This version uses a client-server version of the NEXPERT system that uses the NEXPERT Development
environment instead of the NEXPERT Runtime environment for its processing. To use this stack, replace
the stack contained with the Execute Plan folder in the one on this disk.

At the time of this writing, a bug in the NEXPERT runtime prevented the use of the Execute stack so that
the only way to gain access to the functionality of the Execute stack was to use the NDLClient stack on this
disk.

8.3.2.4 Summary

In summary, the installation of the SPMS system requires the following items:

Hardware:

* 9 Megabytes of RAM for the SPMS system to run (required for NEXPERT Development Environ-
ment)

* 6 Nlegabxtes of RAM for the SPMS system to run (required for NEXPERT Runtime) when its bug is
fixed

* 22 \lcgab\ycs of hard disk to install SPNIS (required)

* 19" or larigcr monitor (recommended)

* Macintosh I1 class computer system (rocommended)

StARS IS-15 Sottware Rcprcscntation Work 141

Software::

• ORACLE for the Macintosh vl.2 (required)

" NEXPERT v2.0B with ORACLE authorization (required)

" Xpert vl.0.4 (required)

• HtyperCard 2.0 (required)

" System v7.0 (required for use with NEXPERT Development Environment).

Also, the software provided on the disks SPMS-1 through SPMS-5 needs to be installed within a folder
using the hierarchical layout shown in Figure 54 on page 140.

8.4 Major Lessons Learned from SPMS Migration Analysis and SPMS
Training

This section summarizes major lessons learned from the SPMS Migration Analysis work and from preparing
for and teaching a class in the use of the SPMS evaluation prototype.

8.4.1 Lessons Learned from SPMS Migration Analysis

From our analysis of what is required to port the SPMS prototype system from the Apple Macintosh to an
IBM RISC System/6000 we have learned several lessons that need to be conveyed to CASE vendors and
framework developers:

1. Project management systems can no longer be viewed as "stand-alone" systems that only project man-
agement and planning teams' use. They must be provided with programmatic interfaces that permit
their effective integration with tools that support process management and software development.
Further, project management system database standards should be developed to permit standard open
access to project management data that other applications can access and update.

2. Control integration tools such as llyperCard permitted SPMS to be developed in an accelerated
timeframe, as the SPMS developers were able to take advantage of products that provided programmatic
interfaces for HyperCard integration. Selection of a suitable control integration mechanism for the RISC
System/6000 and lobbying vendors to provide programmatic interfaces to facilitate tool integration are
essential. The success of UlyperCard should be used as a model by SEE Framework vendors and CASE
application providers.

142 Si ARS Iask IS-IS Software Protcss lools and I echniqucs I valuation Report Version 1.0

9.0 IBM STARS SEE Process Management Architecture
Discussion

Exactly what will be included in a final version of a process management system is not completely clear at
this time. Several strategies have been discussed and reviewed. The following sections describe possible
integration strategies, including issues to be addressed and a candidate IBM STARS process management
architecture.

9.1 SPMS Coexistance Strategy with Other Process Management
Capabilities

The SPMS prototype has been described in detail in previous sections of this report (8.1.1, 8.2). For future
process design/modeling/enactment capabilities other process management facilities may be required to be
integrated with SPMS. The purpose of this section is to describe two systems that may provide process
control capabilities, integration facilities and support for groupware functions needed to provide a robust
process management capability. We describe Hewlett Packard's (HP) SoftBench and UES's KI Shell and
present issues regarding a coexistence strategy for all three tools.

9.1.1 HP SoftBench

HP SoftBench 1.0 is a software development environment consisting of both an integrated set of program
development tools and a Tool Integration Platform. HP SoftBench provides five tools that target the
program construction, test, and maintenance phases of software development. In addition to these tools,
which are standard in SoftBench, users can use the Tool Integration Platform, which allows for integrating
other tools into the environment. The Tool Integration Platform is responsible for providing distributed
computing services, tool communication, OSF/Motif appearance and behavior across all tools, and inte-
grated on-line help facility.

Distributed Computing Services

The HP SoftBench tools can execute in any host in the network, provided that the host has 14P
SoftBench installed. The remote execution is transparent to the client tool that requested its services.
Distributed execution provides full utilization of network resources. With HP SoftBench, data can reside
on any host in the network. A tool is able to access the desired data independent of where the tool is
running. To implement this transparent data access, HP SoftBench uses either Network File System
(NFS) or liP's Remote File Access (RFA), depending on which is available on the system. IP
Soft Bench is built on the X Window System, version 11, an industry standard. This allows programs to
execute on one system and display and support user IO on another.

Communication

The liP SoftBench tools communicate in a networked, heterogeneous environment via a broadcast com-
munication facility designed to support close communication of independent tools. Message requests
allow one tool to invoke the functionality of another tool, and notification messages allow tools (or the
user) to define triggers that respond to events and initiate other actions. Tool communication allows
users to customize and extend the lIP SoftBench environment.

Users may bring their own tools into the IP SoftBench progammning environment by using the IIP
Encapsulator. One or more tools may be linked together to support a task or process. The results of
the encapsulation process are an encapsulated tool with a consistent user interface based on the
(SI:,v Motif appearance and behavior and the ability for that tool to communicate with the other 11P)
Soft Bench tools.

IBM S I ARS S 1I Process Managenirt Architecture IDiscussion 143

OSF Appearance and Behavior across All Tools

HP SoftBench provides a multiwindow graphical user interface. This allows for an easy-to-learn system
that requires little need for reference to documentation. Productivity is increased by having a consistent
user interface across all tools. HP SoftBench implements the OSF/Motif appearance and behavior
adopted by OSF as an industry standard.

Integrated Help Facility

The help facility cooperates with the other tools in the environment to service the user's request for help.
Help can be obtained for general information, context-sensitive information, and definitions of terms
used by any of the HP SoftBench tools.

9.1.2 KI Shell

KI Shell is an object-oriented environment for creating and executing software assistants that provide "deci-
sion support." The KI Shell development tools are used to represent (in a declarative, machine-readable
form) a method by which any end-user can progress through a complex collection of activities and use mul-
tiple, existing software applications. An example of this is a prescribed process that must be followed by
several persons on a project.

The runtime KI Shell Library is a collection of generic utilities designed to interpret a method representation
created by the KI Shell development environment.

The term assistant is used to describe the final, KI Shell-generated software, which comprises of a method
representation, ihterfaces to applications, and the runtime KI Shell utilities. The assistant aids the end-user
in the completion of activities according to the represented method (or process).

KI Shell is used by those persons who specify the method (process), a programmer who implements the
method via C language programming, and the final user who must follow the method (process) prescribed.

9.1.3 SPMS, KI Shell, and HP Softbench Coexistence Strategy

The coexistence of SPMS, KI Shell, and IP Softbench will require resolution of many issues. Through
discussions among SPMS designers and implementers, KI Shell developers, STARS personnel as well as
reading HP Softbench literature and attending demonstrations, we recognized and raised the following issues:

1. KI Shell provides enactment capabilities for executing processes. SPMS provides simulation of exe-
cuting processes. The ability to integrate both tools is desirable.

2. KI Shell provides a role-based view of a process, while the SPMS provides an activities based view of
the process. Both are necessary, however neither is sufficient by itself. A tool combining both (and
perhaps other) views is desirable.

3. Both tools currently use the same database management system (DBMS). There is very likely some
overlap in the data being kept by each tool as well as differences in the data representations used by
each.

4. SPMS provides some automatic simulation of a process as process development continues. KI Shell
relics on hand simulation of a process to validate the steps. It would be desirable to integrate SPNIS
automation techniques with KI Shell enactment capabilities.

5. KI Shell provides a rich set of control structures for navigating through a process. SP.IS allows condi-
tional replanning by instantiating portions of the process.

6. liP Softbench provides inter-tool communication capabilities. Both tools could take advantage of thi s
functionalitv.

144 SIARS lask IS-15 Softwrare Process Iools and lechniques I valuation Report Version I.0J

7. KI Shell makes decisions and coordinates activities based on low level activities such as availability of
inputs. SPMS provides more global information and coordination based on not only availability of
inputs but also schedule and resource allocation. Both capabilities are needed in a final system.

8. KI Shell develops a process model via a frames editor that has knowledge control structures, data
storage, and different roles. The SPMS uses the front end of XPert project management system to lay
out tasks and products as well as their relation to each other. How these two representations can be
combined is an issue to be resolved.

9. KI Shell uses system-level calls from within C routines to execute applications. SPMS includes an
expert system shell which could be used to execute applications. HP Softbench will be Portable
Common Tool Environment (PCTE) Tool Interface Standards compliant. Both SPMS and KI Shell
could make calls to Softbench to become portable among systems.

10. Neither SPMS nor KI Shell provides a process architecture classification standard. If a classification
scheme is derived, should both tools be compliant?

9.2 IBM STARS Process Management Architecture Options
There are several architecture options that could be selected for providing a software process management

capability for the IBM STARS SEE. These options include:

1. Stand-alone SPMS and KI Shell under AIX

This option involves the non-integrated operation of both SPMS and KI Shell executing on top of the
UNIX operating system. SPMS would support activity-based process modeling. KI Shell would
support role-based process modeling and the implementation of a system to invoke tools, based on the
process requirements for the tasks allocated to each user role.

2. Loose integration between SPMS and the KI Shell under AIX

SPMS would support activity-based process modeling. KI Shell would support role-based process mod-
eling and the implementation of a system to invoke tools, based on the process requirements for the
tasks allocated to each user role. In addition, KI Shell would maintain process state information,
process metrics, and process activity information that could be used by SPMS to monitor and track the
process being supported by KI Shell against the activity-based process model for a project. Integration
would be accomplished by sharing an ORACLE-based process state and history database.

3. Integration of both KI Shell and SPMS on top of a software engineering environment, such as iP
SoftBench.

In addition to what is provided by the loose integration of KI Shell, integration into a software engi-
neering environment framework provides the ability to more tightly integrate SPMS, KI Shell, and an
appropriate project management tool. The process integration capabilities provided by KI Shell are
beyond the capabilities of most currently planned software engineering environment frameworks. The
System Integration Library of KI Shell could be reimplemented to use the software engineering environ-
ment's services, and would provide a more robust process management capability than that of most tra-
ditional integration services. Further, making KI Shell PCTE -compliant and migrating it to a
PCTI-compatible software engineering environment framework would ensure that KI Shell process
s\stem applications could potentially be rehosied on any UNIX workstation for which there is a
lCTlF -compilant software enineering environment framework.

In the case of lip SoftBench, the KI Shell Systems Intew'ation Library (SlI) could be reimplerentcd to
employ I IP Soft Bench control intefration services after I 1p Soft Bench has been upgraded to support the
LC'NIA IPCIE Tool Interface Standards. A KI Shell application is developed by writing a C host
progran that employs the SII. to develop process systems. An IliP Soft Bench application cncapsulation
can be accomplished in a slinilar manner. emplo\ing the "encap.,ulator's" control interation services.
By making the KI Shell services consistent with those provided by liP Soft Bench's service, more robust

I 1\I SI ARS SI I Protcc's Management Arthitecture I)icussion 145

process systems can be developed, that not only integrate applications in a software engineering environ-
ment and automate execution steps, but automate the processes governing their use.

The use of a framework which provides data integration services, is not aggressively being pursued at this
time. However, is a framework is selected that provides us with a PCTE data integration capability, we
will assess this capability and revise our process support environment plans, as required.

The selection of these options is dependent on the software engineering environment framework selected by
the IBM STARS SEE task.

9.3 Product Integration Strategy

Like most process related tools, both KI Shell and SPMS must provide modeling features. SPMS uses
MicroPlanner for this purpose, while KI Shell also provides its own interface for process modeling. SPMS
has features for process simulation. KI Shell has features for process enaction and process management. In
this section, we will present an integration strategy.

9.3.1 The Components for a Process Support Environment

In this section, we will discuss the components required for a Process Support Environment (PSE).

Project Planning Component: A Process Support Environment should provide services to support the
planning of software development efforts. Our candidate tool to support software project planning is
Micro Planner. Process planners and process engineers will work to identify and develop project activities
based on the project objectives to be accomplished and the processes that will guide how project activities
should be performed.

Activity-Based Process Modeling Component: A Process Support Environment should provide services to
support the modeling of software processes. Our candidate tools to support activity-based process modeling
are SPMS and AMS 12 . The project plan prepared in MicroPlanner will be imported into SPNIS. Process
engineers will take the project plan and use SPMS to instantiate it, based on existing or planned processes.
AMS will be used to assist process engineers identify reusable process assets to support their process mod-
eling tasks.

Process Model Simulation Component: A Process Support Environment should provide services to
support the testing of software processes before they are installed for use. Our candidate tool to support
process model simulation is SPMS. SPMS provides process engineers with this capability.

ProcesslProject Planning Support Component: A Process Support Environment should provide services
to support the integration of existing process and project data to facilitate process model and project plan
refinement. Our candidate tools to support process and project planning support are SPMS and
MicroPlanner. SPMS provides process engineers and project planners with the ability to incorporate the
data necessary to prepare project cost estimation models, such as COCOMO. Further, data available to
SPMS may be used to update the project planning data in the project planning and management tool, e.g.,
Micro Planner.

Role-Based Process Modeling Component: A Process Support Inviroiiincnt should provide services to
support the development of role-based process models. Our candidate tool to support role-based process
modeling is the K I Shell development environment. Further, it may be helpful to augment KI Shell's devcl-

12 I he I1\1 SIARS Asset Mainagement S\sten (A\IS) is being developed by the 111\1 Reuse learn composed of

memhers from I 1\1 I SI) and S \IW.

146 Sl ARS lask IS-15 Software Process fools and Iechniques I-valuation Report Vcrsion .t)

opment capability with a suitable CASE tool to support systems analysis and design. The KI Shell develop-
ment environment provides process engineers with tools to allocate activity-based processes to project roles.
The role-based process model will provide knowledge of the project activities that have been assigned to all
project role categories, such as process engineer, project manager and software developer.

Process System Development Tool Component: A Process Support Environment should provide services
to support the implementation of role-based process models. Our candidate tool to support process system
development, e.g., implementation of the role-based process models as an executable system, is the KI Shell
development environment. Further, depending on the host implementation language selected, integration
function libraries, such as ORACLE's PRO*C may be required. The KI Shell development environment
provides process engineers with tools to implement the specified process models as an executable process
system.

Process Enactment Component: A Process Support Environment should provide services to support the
enactment of the project's process. The KI Shell-based process system developed will serve as the mech-
anism for ensuring process, tool and application system availability to all project members. SPMS may be
called on as a service from a KI Shell process system to support given process steps, such as computing and
providing product metrics.

Process Monitoring Component: A Process Support Environment should provide services to support the
monitoring of the project's processes, in order to provide support for measurement collection, and ultimately
process improvement. The KI Shell application will provide "tactical" process enactment support and record
events in the "process state and history database." SPMS will provide "strategic- process management
support by monitoring the software process for aggregate trends requiring process analysis and improvement.

An overview of the process components identified above is provided in Table 3.

113 \I SIARS SI I lrocc's \fariagmcncnr Aritccturc I isct-ssion 147

Components Candidate Tools

Project Planning MicroPlanner

o Plan project activities.
o Define resources.
o Develop schedule.
o Define activity exit criteria.

Activity-Based Process Modeling _ MicroPlanner, SIMS, AMS

o Develop activity-based process models.
o Incorporate reusable process components in activity planning.
o Refine resources.
o Refine schedule.
o Refine activity exit criteria.

Process Model Simulation SPMS

o Examine consumption of resources.
o Ability to view different execution paths prior to enactment.

Process/Project Planning Support FMicroPlanner, SPMS

o Refine activity-based process models.
o Provide project and process decision support.
o Support process data integration for cost model generation.
o Refine resources.
o Refine/revise schedules.

Role-Based Process Modeling KI Shell

o Identify and model project personnel role types.
o Allocate project activities to role types.
o Identify resource requirements to satisfy each allocated activity.
o Analyze how each activity could be meaningfully measured.

Process System Development Tool KI Shell, SPMS

o Design a system to support the role-based processes identified.
o Identify requirements for tool integration, in either KI Shell or the selected SEE framework.
o Implement the pro-esses as a KI Shell process system application.

Process Enactment Component [KI Shell, SPMS

o Support process-driven software development.
o Provide data for decision support for activity execution.
o Enforce process enactment discipline between roles.
o Accumulate actual process execution data.
o View :nd report on process enactment status.
o Maintain the "process state and history database.'

P'rocess Monitoring Component SPIS, KI Shell

o Support strateic" process monitoring.
o Watch for aggzregatc process trends.
o Support procc, project plan update, based on task results.
o(enerate reports for process iinpro .ient analysis.

Table 3. Componcnts of a Process Support [nxironment

148 ST\RS lask IS 15 So'tixarc lPro ess Iools and lechniques I valuafioi Reporl Vcrion I.0

9.3.2 Process Support Environment Integration

Of the options identified, IBM will likely integrate the identified process components either as independent,
loosely integrated applications running on top of AIX or integrated into a SEE framework. Both options
will be briefly discussed.

9.3.2.1 A Process Support Environment Integrated on Top of AIX

The tools of SPMS, KI Shell, ORACLE, AMS and MicroPlanner can be loosely integrated to provide a
process support environment. A loose integration strategy is an appropriate candidate, while SPMS is still in
the state of product prototype development. Control integration of applications could be handled through
the use of UNIX shell scripts, specially developed product bridges, or through limited use of KI Shell's
product integration facilities.

Data integration could be handled thr:.ugh the use of ORACLE as a persistent "process state and history"
repository. SPMS will be developed based on the integration of NEXPERT Object and ORACLE, and
already has a facility to import data from MicroPlanner. KI Shell is a COTS tool, which uses ORACLE as
a persistent database. Using ORACLE as a common persistent database would facilitate data integration
between KI Shell and SPMS. MicroPlanner is already set up to import and *export table data. Further,
NEXPERT Object provides an ORACLE bridge. As a result, investment in data integration bridges should
be minimized.

Alternatively, standard application programming interfaces could be provided by the KI Shell to permit
SPMS to create and store appropriate process data in the process repository. KI Shell could also provide the
interface to invoke the SPMS tool within the "process management" role of any KI Shell method. Other
roles of a KI Shell method could be designed to write critical execution metrics in the process repository.
The "process management" role could be developed to employ this data, as well as make it available to
SPMS, to support its process management role of process monitor.

A KI Shell application could be developed to provide process integration for a project, including the process
engineering and project management functions, based on the processes they perform and the tools they
require.

9.3.2.2 A Process Support Environment Integrated into HP SoftBench

Control integration between a KI Shell process application and the selected Process Support Environment
tools could be accomplished through the use of lIP SoftBench's message service. Figure 55 on page 150
provides an architectural view of the Process Support Environment's components, communicating through
the message service, while data integration is accomplished either through ORACLE or on a tool-to-tool
basis, as described in the previous section. Please note that Figure 55 on page 150 takes a product view and
that the Process Support Environment components identified earlier are functionally integrated into the
architectural components shown.

Process integration, as identified above, to support project use, could be managed through a KI Shell process
application.

IM SIARS SI I Pro,ces:, Ila ccnait \tihitcctirc I)i(u,-in, 149

Role- Process State Software Process Project
Based and History Management System Planning and
Process Repository Activity-Based Management
System Process Modeling and Proc- System

ess Monitoring

Process Pocs Persisant Policys and MicroPlanner
Enacment [b Data and Rules in XPert or Suit-M] DAbE Metrics NEXPERT able Replace-MhaimORACLEFomlsi c
Provided by a Formulas in Ob ment to Provide
KI Shell the I]SQL compatible
Application ORACLE table data ex-

Database; ports.

Message Service

User User User
Application Application Application
(1) - (2) - (N) -

Invoked Invoked Invoked
fromr he KI fromteKI from the KI
Shell-based Shell-based Shell-based
Process Process Process
System System System

Figure 55. Candidate IBN1 Process Support Environment Architecture Concept.

The 'role-based process system" block shown on Figure 55, represents a KI Shell application to support the
PSE process enactment component. The "process state and history repository" block shown on Figure 55,
represents the persistent store of process data that is to be shared by the KI Shell process application and
SPMS. The 'Software Process Manager~rcnt System" and "Project Planning Management System" blocks
shown on Figure 55 satisfy the following PSE components:

Project Planning

150 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

" Activity-Based Process Modeling

" Process Model Simulation

" Process/Project Planning Support

• Process Monitoring.

The PSE components not shown on Figure 55 on page 150 are the "Role-Based Process Modeling Compo-
nent' and the "Process System Development Tool Component." These components are satisfied in part by
the KI Shell development environment, and suitable COTS CASE tools, such as CADRE TEAMWORK
and Statemate. Both activity-based and role-based process modeling may be facilitated by using AMS to
help identify candidate process assets for reuse.

9.3.3 Benefits of a Process Support Environment

Several advantages result ioom a tool set integrated into a process support environment. With data inte-
gration -- all process tools work on the same database -- it is possible to use the same current data. This
results in many advantages:

1. Simulation can use actual project execution data preserved by the enaction tool. Therefore, simulation
provides more accurate project status for process management and for replanning. This facilitates con-
tinuous process improvement.

2. Process management is based on actual resource usage, because consistent data is used by all tools. This
avoids cost overruns.

3. There is global awareness of exact process status. This allows early resources to be redirected to
problem areas.

4. By enacting a modeled process and capturing precise model-based metrics in the database, real process
improvements are easier to identify.

KI Shell's Process State Data contains a role, activity structure, and attribute data. Program interfaces can
be provided to all tools that are to be tightly integrated. The integrated process support environment
depends on three levels of integration, namely:

1. Data Integration:

Common, consistent, up-to-date data available for all tools.

2. Control Integration:

Standard way to invoke, suspend, and pass data to a tool.

3. Process Integration:

Discipline by which users collaboratively enact steps.

These three levels of integration are illustrated in Figure 56 on page 152.

II1M SIARS SI I I'roccs al;n;igcncnt .rhitecturc Is)icu sion 151

PROCESS
INTEGRATION

Process Disciple
Enforced

CONTROL
INTEGRATION

Poes Process Process Process Dmi
n eEach Tool Modeling Simulation Managemen Enaction ToolsInvoked in a

Standard Way

Process State Repository:

DATA - Activity Precedence
INTEGRATION Role

Common Activity Resources
Process Daa Overall Schedule
Process at Enaction Data
and History • Activity Attributes

• Role Attributes M229

Figure 56. Levels of Integration.

152 ST.A KS Task IS-l 5 Software Process lools and lechniques [valuation Report Version 1.0

10.0 IS-15 Task Conclusions

From conducting the "Cleanroom Software Process Case Study" we reached the following conclusions:

1. A pre-condition for implementing a process for support by a process enactment mechanism is a well-
defined process.

The "Cleanroom Engineering Software Development Process (SDP)" is a very well-defined process. The
Cleanroom Engineering SDP was prepared for humans to follow in performing Cleanroom Engineering
to develop software systems. However, the Cleanroom Engineering SDP needed to be expressed in a
sufficient level of detail to enable its programming as a KI Shell application, namely CEPA, to support
the enactment of the Cleanroom Engineering SDP.

2. It is possible to implement complex processes in the KI Shell.

The "Cleanroom Engineering Software Development Process" was a very suitable example for the KI
Shell, in that it was able to take advantage of the its representation and processing power. KI Shell was
developed to accommodate sophisticated processes where:

a. Each process is composed of multiple steps

b. There is synchronization of processes among process steps

c. There is cooperation among processes steps (e.g. one step may produce a result usable by
another process step, etc.)

d. Process steps require the invocation of utility or application programs

e. Process steps have a reasonably complex control structure.

3. It is possible to implement a complex KI Shell process application in a reasonable time frame.

The final version of the CEPA prototype system, based on the CEPA specification, was implemented in
1 man month. Much of the time spent on the case study problem was in understanding the problem,
not implementing it.

4. The use of Box Structure notation for recording processes as exemplified in the "Cleanroom Engineering
Software Development Process" is excellent for conveying process requirements.

The case study implementation team was able to read this process document and interpret the process
notation without formal training. However, it was expressed that "box structures reader training" would
have been helpful. However, Box Structure notation is not all that is required to plan processes for
development. Role specification and planning techniques are also extremely important.

From conducting the "SPMSiKI Shell Coexistence Study," we reached the followig conclusions 3

1. Development of process models for a software development project require "activity-based" process mod-
eling as well as "role-based" process modeling.

The Software Process Management System provides the ability to combine the process model for a
project with project planning data to produce the "Project'Process Plan." Ihe K I Shell allocates project

13 It should be recognized that the -SPNIS KI Shell Coexistence Study" is based on our current understanding of the

state of both the SP.1S product and KI Shell. and the identified CO1 S tools. Further, the coexistence strategy
suggested, nma have to he revisited several times before a final -Process Support I mvironment Solution" architecture
is reali/ed.

IS 15 Iask Conclusions 153

activities to specific roles assigned the responsibilities to perform project activities and support people
who assume these roles in following the prescribed process.

After the network of activities for a project have been identified, they can easily be allocated to roles, and
methods for user role support of process activities (or process tasks) can be developed.

2. Processes, at the "activity level" can be simulated before deploying them for use.

The Software Process Management System provides the ability to simulate a process to determine how it
will perform under specified conditions. The results of the simulations can be used to correct or improve
a process model, before it is implemented for enactment.

3. SPMS and the KI Shell can provide complementary support in the preparation of a STARS process man-
agement solution.

The Software Process Management System can provide support for process activity modeling. KI Shell
can provide support for role modeling and process enactment. SPMS can provide a simulation and
monitoring capability. KI Shell can provide tactical control over the execution of the process applica-
tion developed, and could make available process and product state data, and event data to SPMS to
permit the tracking of the planned "process/project plan" versus actual project performance. Where the
KI Shell provides users with knowledge of what tasks to perform and provides process guidance to
perform the tasks, the SPMS can provide the users knowledge of when to perform their tasks. We feel
that the combination of these two powerful capabilities will provide an excellent basis for fielding a soft-
ware process management capability.

4. The product and process metrics available in SPMS and KI Shell will help facilitate a process measure-
ment and improvement capability for management.

KI Shell provides a built-in capability to collect process metrics within process steps and report them for
analysis. Further, it is possible to build in to KI Shell process applications, the execution of tools to
provide product metrics for collection and reporting. SPMS has integrated the RADC Quality Frame-
work product measurements and makes them available for use in developing activity-based process
models. The combination of these capabilities provides process engineers with a set of tools for col-
lecting and analyzing measurements collected from performing process steps and measurements collected
about the products of process steps, to support a project's process improvement activities.

154 S IARS K I S.-k 15 SofiPkare Protcss I ools and I cchriqucs ii',aluation Rvport \er-ior 1.0

11.0 References

1. Adams, E. N., "Optimizing Preventive Service of Software Products," IBM Journal of Research and
Development, January 1984.

2. Boehm, B. W., et al., "Characteristics of Software Quality," North Holland Publishing Company, 1978

3. Boehm, B. W., "Software Engineering Economics," Prentice--jall, 1981.

4. Boehm, B. W., "Improving Software Productivity," IEEE Computer, Volume 20, Number 9, September
1987, pp. 43-57.

5. Boehm, B. W., "The Spiral Model of Software Development and Enhancement," IEEE Computer,
Volume 21, Number 5, May 1988, pp. 61-72.

6. Brooks, F. P., "No Silver Bullet: Essence and Accidents of Software Engineering," IEEE Computer,
Volume 20, Number 4, April 1987.

7. Cobb, R. H. and H. D. Mills, "Engineering Software under Statistical Quality Control," IEEE Software,
November 1990.

8. Curtis, B., H. Krasner, and N. Iscoe, "A Field Study of Large Software Projects," Communications of
the ACM, Volume 31, Number 11, November 1988.

9. Cusumano, M., "Hitachi: Pioneering the Factory Model for Large-Scale Software Development," MIT
Sloan School, Working Paper 1886-87, Cambridge, Massachusetts, 1987.

10. DeMarco and T., T. Lister, Peopleware, New York: Dorset, 1987.

11. Dyer, M. and A. Kouchakdjian, "Correctness Verification: Alternative to Structural Software Testing,"
Information and Software Technology, January/February 1990, pp. 53-59.

12. Green, S.E., A. Kouchakdjian, and V. R. Basili, "The Cleanroom Case Study in the Software Engineering
Laboratory: An Experiment in Formal Methods," SEL, University of Maryland, 1989.

13. ttumphrey, W. S., "Characterizing the Software Process: A Maturity Framework," IEEE Software,
March 1988, pp. 73-79.

14. Kellner, M. I., and It. D. Rombach, "Session Summary: Comparisons of Software Process Descriptions,"
Proceedings of the 6th International Software Process Workshop: Support for the Software Process,
Ilakodate, Japan, ACM Press, October 29-31, 1990.

15. Kling, "The Web of Computing: Computer Technology as Social Organization," Advances in Computers,
Volume 21, pp. 1-90, Reading, Massachusetts: Addison Wesley, 1982.

16. Krasner, II., B. Curtis, and N. Iscoe, "Communications Breakdowns and Boundary Spanning Activities on
Large Programming Projects," in Proceedings of the Second Workshop on E-mpirical Studies of Pro-
gammers, pp. 47-64, Norwood, New Jersey: Ablex Publishing, 1987.

17. Lchman, MI. .M., and L. A. Belady, eds., "Program Evolution: Processes of Sojivare Change," APIC
Studies in Data Processing, Volume 27, London: Academic Press, 1985.

IS. I inser. R. C.. II. 1). Mills, and B. 1. Witt, Structured Programming: Teoty and Practice, Reading.
.Massachusetts: Addison \'esley, 1979.

19. I iner, R.C. and i1.1). ilk. A. Case Study in Cleanroom So!lware Theince'iz,. /Bll?.I C!10)L,
.Stueturin' Rwcility," Proceedings of COMPSAC '88, IlFl. 19SS.

20. 1 ingcr, R. C. and I1. 1). Mills, "A Case Study in Cleanroom Software In'. ,inerint:]'he 1111 COO3L
Structurinl tac'diitY." Proceedings of COMIPSAC '88, If]1:. I.NS.

21. McCall. J.. l'actors in Software Quality," GE-'I IS-77CIS02, (jcncral Icnc Compny., 1977.

Rctcrences 1 55

22. McGarry, F., "What Have We Learned in the Last Six Years?" Proceedings of the Seventh Annual Soft-
ware Engineering Workshop (SEL-82-007) Greenbelt, Maryland: NASA GSFC, 1982.

23. Mills, I. D.,"Stepwise Refinement and Verification in Box-Structured Systems," IEEE Computer,
Volume 12, Number 6, June 1988.

24. Mills, H. D., R. C. Linger, and A. R. Hevner, Principles of Information Systems Analysis and Design,
Academic Press: Orlando, Florida, 1986.

25. Musa, J. D., and F. N. Woomer, "SAFEGUARD Data-Processing System: Software Project Manage-
ment," Bell System Technical Journal, SAFEGLARD Supplement (1975), S245-S259.

26. Phillips, R. W., "State Change Architecture, A Protocol for Executable Process Models" in Representing
and Enacting Process - Proceedings of 4th International Software Process Workshop, IEEE Press, 1988.

27. Pierce, P.A., "Software Quality Framework Issues," Volume 1, II, Il1, SAIC, San Diego, CA.

28. Reed, B.,"Process Metrics Working Notes," UES, Columbus, Ohio, July 24, 1991.

29. Ross, N., "Editorial Comments on Process Metrics," IEEE Software, Volume 23, Number 7, July 1990.

30. Royce, W., "Managing the Development of Large Software Systems: Concepts and Techniques," Pro-
ceedings, WESCON, August 1970.

31. Scacchi, W., "Managing Software Engineering Projects: A Social Analysis," IEEE Transactions on Soft-
ware Engineering, Volume 10, Number 1, January 1984, pp. 49-59.

32. Selby, R. W., V. R. Basili, and F. T. Baker, "Cleanroom Software Development: An Empirical Evalu-
ation," IEEE Transactions on Software Engineering, Volume SE-13, Number 9, September 1987.

33. Vosburgh, Curtis, Wolverton, Albert, Malec, Hoben, and Liu, "Productivity Factors in Programming
Environments,' Proceedings of the Seventh International Conference on Software Engineering, Wash,
DC. IEEE Computer Society, 1984, pp. 143-152.

34. Walston, F., "A Method of Programming Measurement and Estimation," IBM Systems Journal, Volume
16 Number 1, 1977, pp. 54-73.

35. Weinberg, G. The Psychology of Computer Programming, New York: Van Nostrand Reinhold, 1971.

36. "CEPA: The Cleanroom Engineering Process Assistant," STARS Task IS-15, July 10, 1991.

37. "The Cleanroom Engineering Software Development Process," STARS Task IR-70E, CDRL Sequence
07001-001, February 28, 1991.

38. "A Software Process Management System for the STARS Software First Life Cycle," IBM STARS
Deliverable CDRI Number 3016, 29 October 1990.

39. "User's Manual for SPMS," IBM STARS Dclivcrable CDRL Number 3118, i7 June 1991.

40. "RADC Quality Framework (Technical Report (Interim) V/olume IV Soft'are Quality Framework," Con-
tract #F30602-88-C-0019, CDRL Sequence ft A007, Software Productivity Solutions, September 1989.

156 S I A RS I ask IS -15 Sof iare I' rmtt's I oaS 111d I CthIiqiJcs Ivalhation Report \'r Jol 1.0}

Appendix A. SPMS Training Class Materials

This section includes the "SPMS Training Class" student handout.

A ppenidix A. SPIS I raining Cla.ss \ latcrials 1 57

Training Materials for the

PIMS
Software Process Management System

Click Anyvhere To B egin

Course Objectives

The course will focus on :

" Using the Software Process Management System

" Learning to create process models

" Learning how each element of the SPMS interacts
with other elements

" Learning how to use the project specific plans
to assist in validation of the process models

By the end of the course , students will have:

" Become familiar with the elements of the SPMS

" Created, instantiated, and simulated their own
process models

Course Schedule
Day 1
9:00 Course Introduction and Overview

SPMS Overview
Process Models vs Project Plans
Granularity Issues
Nodes, Constraints, Phases
Architectural Levels
Development Modes
Hierarchical Models
Measurement Model
Graphical Representation

10:00 Building a simple Model in Xpert
Exercise 1

10:30 SPMS model representation
Exercise 2

11:00 Project Specific Data
11:30 Exercise 3
12:00 Lunch
1:00 Discussion of exercises
1:30 Scheduling the Plan
2:00 Exercise 4
2:30 Graphic Monitoring
3:00 Simulation of the Plan
3:30 Exercise 5
4:00 Discussion and review

Day 2
9:00 Review/Questions
9:30 Validation tasks and Rework
10:00 More Complex Models
10:30 Exercise 6
11:00 Discussion & Questions
11:30 Summary and support issues.

tn

cnn

00

0 40

CD 0
cn CAU)U

ix 0

CL .6 E

0

C1 C aU

CL

LM cL u

CL~

4-,

E
0)

4-J

0C

Cl) E

0
L. -cu

4-0 cu

0 CU

0) U

U)U

C/) 0
cc c : ZL 0)

4-5~ 04- 1 U

-75 .c
U (U + mI (U4)

0 00'
o L 0 L U) L

4)

00 E
00

a..~~ (I 0*
0E

con

0

-

0) CL:

L. 0 >,

a.. 0 L- 4)0w

V r

a ~C

o ~0
Lmd. CD

Process Models vs Instantiated Plans

Process Model:

Represents a prototypical sequence of tasks,
milestones, constraints, and products necessary to
produce a prototypical single instance of each of the
types of software component within the process
model.

Process models provide the framework for producing
plans that may be replicated and a framework for
metrics which may measure the process.

Plans:

Contain numerous specific named and inter-related
instances of the software components and the
tasks necessary to produce them according to the
process model.

Plans are the baselines for monitoring progress of
a specific software development project.

C1

Cuu

(U(

-o

cu 0~ E

4J c0

13.3

crn" ,., CC. o

_ _ _ _ _ _ _c 0)-
(D 0 0-

.&o.

_ _ _ _ _"__ _c3 ---

0 C 0

U~ 00 8 a
Ct

•
(n

"Mo ..

4-0 (0 .

Ucl U 3U

cuco

0~0C/) *000

0 0 0

44-,

4-J rr

D o 0
a.

cc 0 0 _

O . 0 -.- c 0

Process Model Granularity Issues

Process Interface

Import Graphic Model Edit Process Edit 10 and Constraints

Edit a Model Edit Product Edit Constraints

Delete Model

* Entire model

- Import Graphic Model
- Delete Model

* Named Groups of Components

- Edit Model

* Individual Components

- Edit Process
- Edit Product
- Edit Constraints
- Edit I0 and Constraints

Nodes

L i . Task:

The basic component of a process model.

L 1 e Milestone:

A special node used to highlight important
events in a process model.

* Interface:

~A special node used to link subnetworks
in the process model. Represents a
product in the SPMS.

* Reverse: (OR)

A special node used which allows the
successor to start when any predecessor is
complete rather than when al/predecessors
are complete.

Constraints
Systems Analysis Phase

* Finish to Start:

- Specifies that a task cannot start until its predecessor'is complete.

* Finish to Finish:

- Specifies that the completion of a task dictates the completion of its
successor. May have a duration to specify lag time between a task and
its successor.

* Start to Finish:

- Specifies that a task cannot finish until its predecessor starts.

* Start to Start:

- Specifies that two tasks can start together. A duration applied to this
type of constraint indicates a lead time between the start of one task
and the start of its predecessor.

* Hammock links:

- May have resources
- Dynamic durations calculated as elapsed time between end points.
- Used to represent phases in SPMS

Architectural Levels

S Sy stem

E cscICI DcscI
c sc, csc(

csu csu C su

" Alternative architectural levels within a process model

" Nodes in a process model contain an architectural level parameter.

" Project specific software components also contain this parameter.

" Plans contain nodes in which the model and component parameters
match on both architectural level and development mode.

Development Modes

" Develop module?

* Reuse module?

* Prototype module?

" User defined....

o Alternative sequences of nodes within a process model

e Nodes in a process model contain a development mode
parameter.

o Project specific software components also contain this
parameter.

e Plans contain nodes in which the model and component
parameters match on both architectural level and
development mode.

* Allows instantiation time tailoring of model.

Hierarchical Models

Process component "A"

Process component "B"

Some Possibilities:

Process component "A" might be ~a the SYSTEM level.
Process component "B" might be at the CSCI level.
"B" might be considered "Part of" "A"

Process components "A" and "B" might be at the same
level and "B" specify greater detail than other portions
of "A". "B" might be considered "Part of" "A"

How do you want to view parts in the model editor?

ca 0

=~ =eo O

= D @ = 0

CL 00 ca

Q~ 0 t
2.D ca 0 CuCI

-0 0 CO:)
>: Cu ca C c C

6=C cm-CO) Z.0 E ~ n .4. cacn3:2

o0 Lo ca cis (A

CD0 2= 0
*t 0 =u C CcL u

ca1. .. u 2 .u F M

20 Z.

*D ci -- 4w 0CDC c

0~o CLJ2=Z.C

=C 0 0 C
0 n W fm .. 0 0mn

E 0 = LL CAc
CD ca CD..ca.

0 imz-nc

wE0~ 0oL E o > 00 0 c c

LL ow

0c

0n
0D

o

TABLE 1.1-3 SOFTWARE QUALITY FRAMEWORK
FACTORS AND ASSOCIATED CRITERIA

E I R S U C M V E F I P R
F N E U S 0 A E X L N 0 E
F T L R A R I R P E T R U
I E I V B R N I A X E T S

FACTOR C G A I I E T F N I R A A
I R B V L C A I D B 0 B B
E I I A I T I A A I P I I
N T L B T N N B B L E L L
C Y I I Y E A I I I R I I
Y T L S B L L T A T T

Y I S I I I Y B Y Y
CRITERION T L T T I

Y I Y Y L
T I
Y T

Y

ACCURACY X
ANOMALY MANAGEMENT x X.
AUTONOMY X
LISTRIBLTEDNESS X
EFFECTIVENESS - COMMUNICATION X
EFFECTIVENESS - PROCESSING X
EFFECTIVENESS - STORAGE X
OPERABLrI"Y X
RECONFIGURABILrY X
SYSTEM ACCESSIBILITY X
TRAINING I I - X
COMPLETENESS X
CONSISTENCY X X
TRACEABILITY X
VSIBILrrY X X
APPLICATION INDEPENDENCE X
AUGMENTABILIrY X
COMMONALrIY x
DOCUMENT ACCESSIBILITY & X
FUNCTIONAL OVERLAP x
FUNCTIONAL SCOPE X
GENERALTY X X X
INDEPENDENCE X X X
SYSTEM CLARIrY X
SYSTEM COMPATIBILITY X
VIRTUALITY X
MODULARITY XX X X X X X X
SELF-DESCRIFrIVENESS X X X X X X
SIMPLICITY X X X X X X

1-8

r FIA255 945 SOFTWARE TECHNOLOGY FflR ADAPTABLE RELMLEVSTvEf f S---- -
(STARS) PROGRAM SOFTA.. (U) IBM FEDERAL SECTOR DIVI GAITHERSBURG MD W H ETT 30 SEP 91 03705-001 XC-AFSC

UNCLASSIFIED F19628-88-D-O032 NLIEIIIIIII.I
I.".I

111 2 I

i 2
'I'36

Data Collection Forms
by Phase and Architectural Level

Software Development Phase Form
System requirements analysis/design DCF A
Software requirements analysis DCF B
Preliminary design DCF C
Detailed design DCF D
Coding and CSU testing DCF E
CSC integration and test DCF F
CSCI testing DCF G
System testing DCF H
Operational test and evaluation DCF I

Architectural Data Collection Forms
Level

A B C D E F G H I
SYSTEM X X X
CSCI X X X X X X
CSC X X X X
CSU x x x

CD0

0

(~C) 4-

00
0 .9- C

cn.

0 4F

+ +

434

~0.~~0**0.;
%*n *(

Zoo%

+ vi *0
M- V 0. - -

+ + =,& .

.0 + 4.+
+0,~

(#2

0 Go
C4 N (4

49~ + +
It

es

E n ~ * - . -
9

06 J3 0 V~

Wl
rn +

Validation Tasks and Rework Node Id'S

1 2 3 4)

Task "A" Task "B" Milestone Product
Process id DCF A, 123 "C" "D"
123 SYSTEM

Task "B" is a validation task.

When Task "B" begins it requests that the Data Collection Form (DCF A) associated
with it be filled with data.

When the data becomes available, the metrics associated with this project are
computed and compared with the quality goals of Product "D".

* Quality goals met, then Task "B" is complete and the Milestone "C" is met and
Product "D" becomes available.

* Quality goals not met then replanning will find the task associated with product
"D" which is of the process type "123" and use it as the starting point for cloning
up to and including the validation task.

Task "A" Task "B" Milestone Product
Process id DCF A, 123 "C "D
123 SYSTEM

5 6

Task "A" Task "B"
Process id DCF A
123 SYSTEM

Impact of Re-Work on other Process Components
Tasks Not Started Case

Process Component 1

2 34

Task wA= Product "E" Task "B" r Milestone Product
Process id Version 1.0 DCF A, "C" "D"123 123 /

SYSTEM/

Task "A' Product "E" Task 'B"
Process id Version 2.0 DCF A

123 SYSTEM

Process Component 2

5 9 10

ct "E*, %

Aersion 1.0 %Task "G"

Not yet started.7

Product "E"
Version 2.0

-I

Impact of Re-Work on other Process Components
Tasks In Progress Case

Process Component 1

Task "A" Product "E" Task "B" Milestone Product
Process id Version 1.0 DCF A, "C" "D"
123 123 j

SYSTEM

6 1 8

Task "A" Product "E" Task "B"
Process id Version 2.0 DCF A

123 SYSTEM

Process Component 2

5

Product "E"
Version 1.0 H

Started but not
7 Finished

Product "E"
Version 2.0

Impact of Re-Work on other Process Components
Tasks Complete Case

Process Component 1

2 3

Task "A" Product "E" Task "B" Milestone Product
Process id Version 1.0 DCF A, "C" "D"
123 123

SYSTEM

6 118

Task "A" Product "E" Task "B"
Process id Version 2.0 DCF A

123 SYSTEM

Process Component 2

5

Product "E"
Version 1.0 Task "G" Task "H"

Finished Finished
7

C)11H 12

Product "E" Task "G" Task "H"
Version 2.0

45

0 o! CL

o to

c to

.. * . *

IID

-S............

N C

X

*~~~~~~~~
g.,*** *.**** * *

LL.

I a
2v

......

cU

C E E
..... . ..

..........

..... ... 0.

Exercise 1

1. Using the associated hand-out input the System Requirements Analysis
subset of the process model as a part of a larger model.

2. Create a Systems Analysis Phase.

3. Use only Finish-to-Start constraints.

4. Export the model from Xpert.

. DEVELOPMENT PROCESS

.0.1 The developer shall implement a process for developing the
oftware. The development process will be composed of the following

major activities:

a. System Requirements Analysis
"b. System Design
c. Software Requirements Analysis
d. Software Architectural Design
e. Software Detailed Design
f. Software Coding and Testing
g. Software Integration and Testing
h. Software Configuration Item Testing
i. System Integration and Testing
J. System Testing
k. System Installation and Checkout.

6.0.2 The developer shall select and map these activities onto the
life cycle model established for the software project. The selected
activities may overlap and may be performed iteratively or
recursively.

6.0.3 The developer shall use the methodologies, standards, and
procedures that are systematic, adequately documented, and established
by the developer's organization for performing the activities.

6.0.4 The developer shall use the computer programming language(s)
as specified in the contract to code the deliverable software.

6.0.5 The developer shall consider incorporating non-developmental
items into the deliverable software. Incorporation of such items
shall comply with the documentation, data rights, warranty, and other
requirements as specified in the contract.

6.0.6 The developer may employ non-deliverable items in the
development or maintenance of software. However, the developer shall
ensure that the operation and maintenance of software after its
delivery to the purchaser will be independent of such non-deliverable
items. In case such independence cannot be ensured, the developer
shall treat the non-deliverable items %s non-developmental upon
notifying the purchaser regarding the impact of non-deliverable items
on the cost, schedule, operation, and maintenance of the deliverable
software.

17

~~f i E U ~ _

6.1 Svsten ec.ulremnts AnalVsis. The developer shall perfform or
support the following system requirements analysis activities.

6.1.1 Engineerflg. The developer shall analyze the statement ofneed, statement of work, and recommended solutions, if available, to

define a set of system requirements addressing the following as a
minimum:

a. Functions and capabilities of the total system, including
Cperformance, quality, and physical characteristics and

environmental conditions under which the system will perform;
b. Safety requirements, including those related to equipment

characteristics and degradation, methods of operation and
maintenance, environmental influences, and personnel injury;

c. Security requirements, including those related to operational
and maintenance environments and compromise of sensitive
information or materials;

d. Human engineering requirements, including those related to
constraints on personnel, areas needing concentrated human
attention and sensitive to human errors, and training;

e. Interfaces requirements for interfaces external to the system,
including interfaces with users;

f. Operation and maintenance requirements.

6.1.2 Oualification Testing. The developer shall define a set of
system qualification requirements, including qualifications methods,
for verification, validation, and testing of the system requirements.

6.1.3 Docunentation. The developer shall docuent the system and
qualification requirements in a system requirements document in
accordance with section 9.4.

6.1.4 Product Evaluation. The developer shall perform evaluations
of the system and qualification requirements for the criteria
identified below as a minimum. When a problem is detected, corrective
actions shall be taken in accordance with section 9.3.3.

a. Consistency -- external and internal;
b. Traceability;
c. Test coverage of requirements;
d. Testability;
e. Feasibility of design, operation, and maintenance;

6.1.5 Formal Peview. The developer shall conduct one or more system
requirements reviews in accordance with section 9.2.

6.1.6 Conficuration Manigement. The developer shall place the
documents identified below under configaration management and perform
configuration control in accordance with section 9.1:

a. Statement of work
b. System requirements document.

18

Exercise 2

1. Import the graphic model of Exercise 1 into zhe SPMS.

2. Browse the fine grained components using "Edit Process", "Edit
Products", and "Edit Constraints" buttons.

3. Browse the product to producer and consumer relations using the
"Edit I0 and Constraints" button

4. Browse the hierachicaa coarse grained ccmponerits using the "Edit
Model" button

a. Edit your model as desired.

Exercise 3

1. Move to the Project Interface and create a new Project.

2. Define a system level component with a source to match the
development mode of your model.

3. Create a Plan by selecting your model and your project and providing a
name for your plan.

4. Export the plan from the SPMS

Exercise 4

1. Create a new project in XPERT. Clear the New Subproject which is
automatically created. From the Date Control Panel, Turn off the Show
Hours/Minutes option.

2. Import your plan into XPERT.

3. Use "Clean Up" to improve the readability of the activity network.

4. Select the tasks in the network and enter durations. (Format is
"weeks,days".

5. Perform Time Analysis.

6. Build a Gannt chart to display your results. See Gannt chart options for
tailoring the chart.

7. Build a Table view. Use "Selected Table" with "0" resources displayed

8. Select the entire table and Export it from XPERT. (use name.DAT"
format)

Exercise 5

1. Import the scheduled plan into the SPMS.

2. Randomize the durations of your plan.

3. Create some graphs for monitoring your plan during execution

4. Execute the plan.

Exercise 6

1. Open your model in Xpert.

2. Add a validation task for the Systems Requirements Document.

3. Be sure your DCF and rework node id are appropriate!

4. Alter the constraints to allow some tasks to begin when any of their
inputs are available but only finish when all of their required inputs have
been made available.

5. Export the model from Xpert.

6. Import the model into SPMS

7. Create a new project.

8. Select measures and default quality goals for this project.

9. Define Parts.

10. Create a new plan using your new model and new project.

11. Execute the plan.

12. Replan as necessary.

